Removing Galactic foregrounds on CMB polarization maps using convolutional neural networks

Lic. Luca J. Gómez Bachar

Advisor Dr. Daniel Supanitsky Co-advisor: Dra. Cora Dvorkin

A brief summary about me

- PhD in physics student at UNSAM, advised by Daniel Supanitsky
- Co-advised by Cora Dvorkin (Harvard University Professor)
- Member of QUBIC collaboration
- Member of CMB-S4 collaboration

- I spent six months working with Cora at Harvard University (from

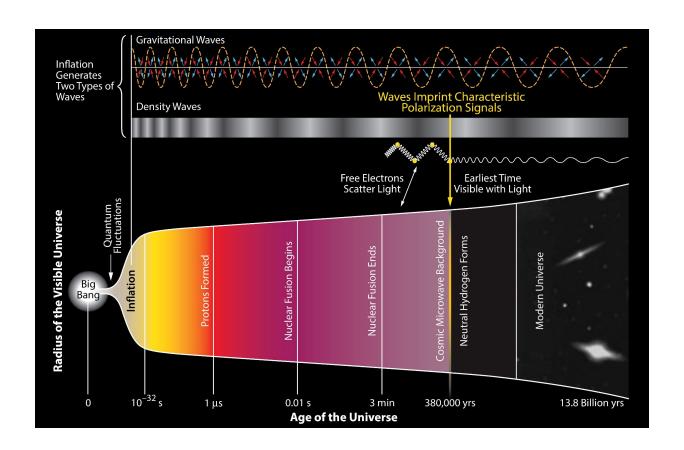
January-July)

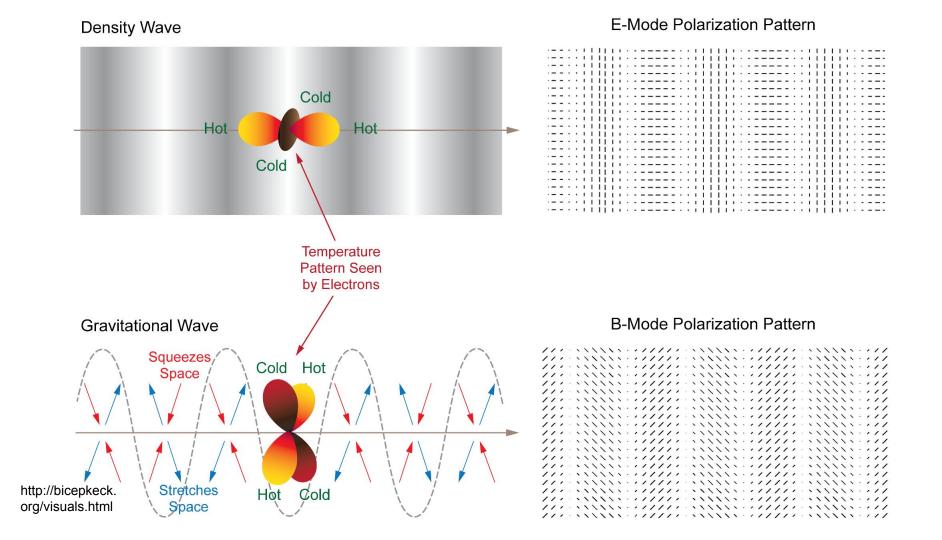
A brief summary about me

- PhD in physics student at UNSAM, advised by Daniel Supanitsky
- Co-advised by Cora Dvorkin (Harvard University Professor)
- Member of QUBIC collaboration
- Member of CMB-S4 collaboration

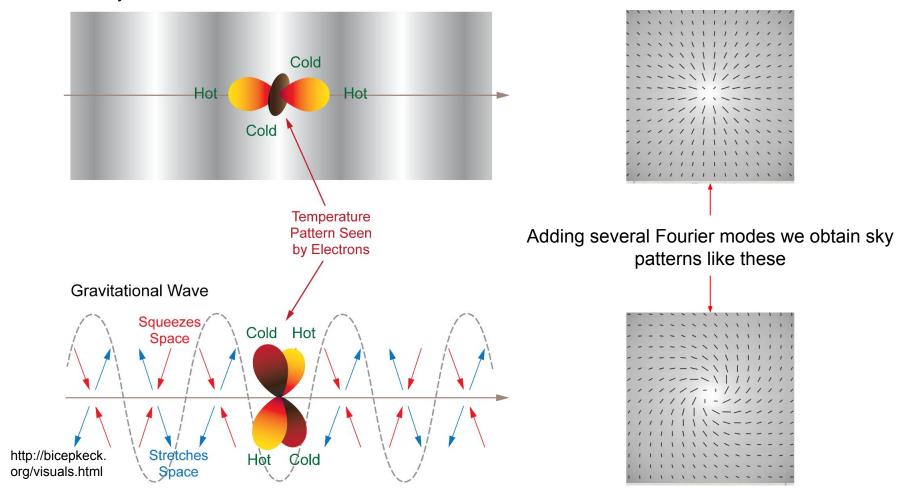
- Field hockey player & coach
- Huge fan of River Plate (futbol)

Primordial waves in the Universe

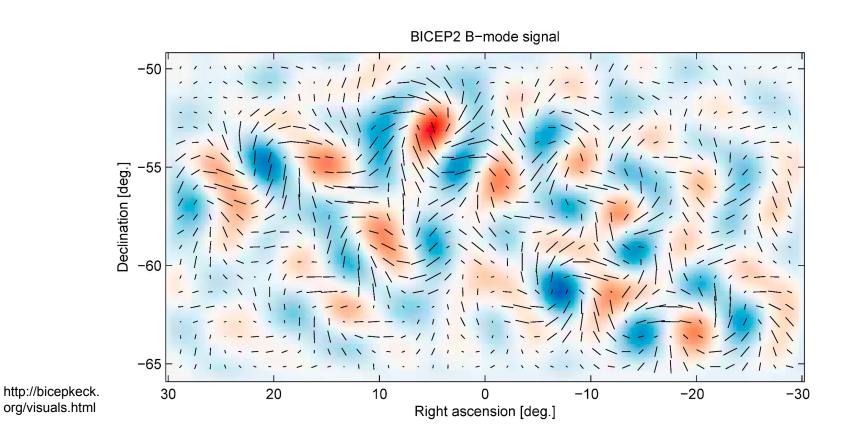




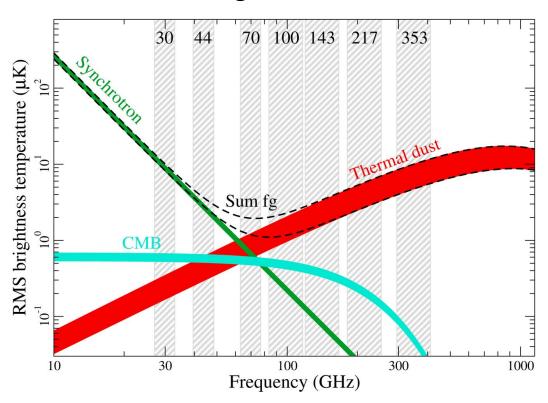
Density Wave



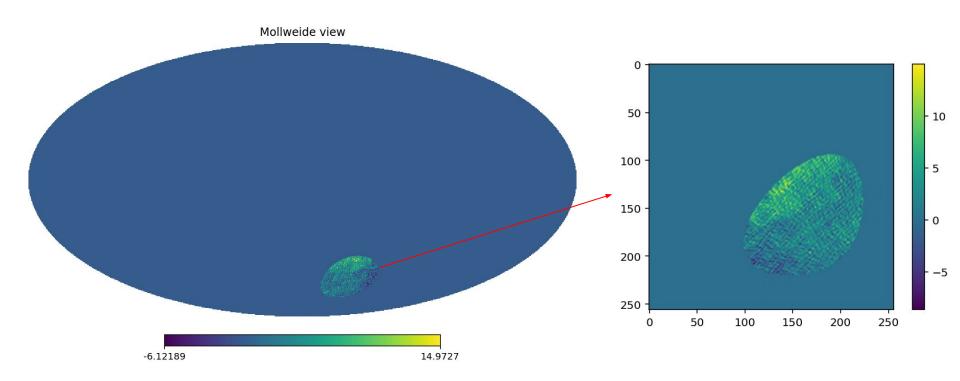
The best measurement so far

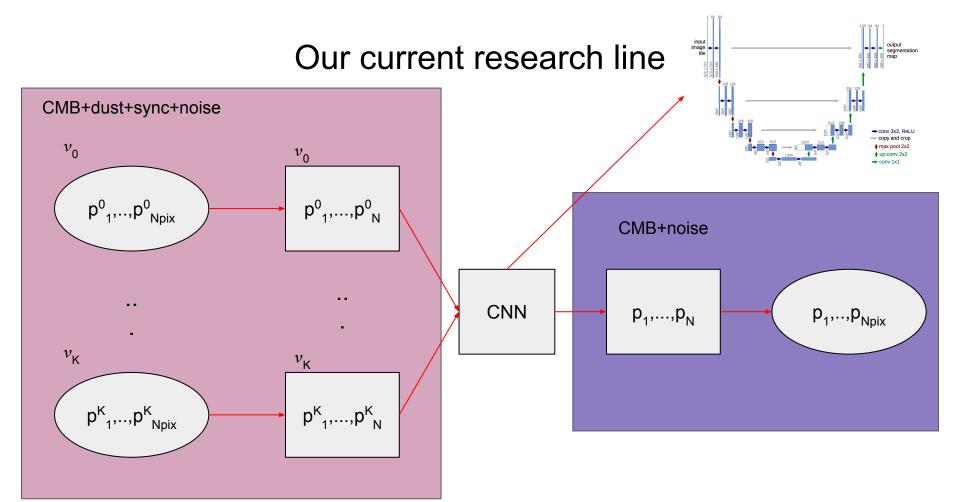


The Galactic foregrounds contamination



Our current research line

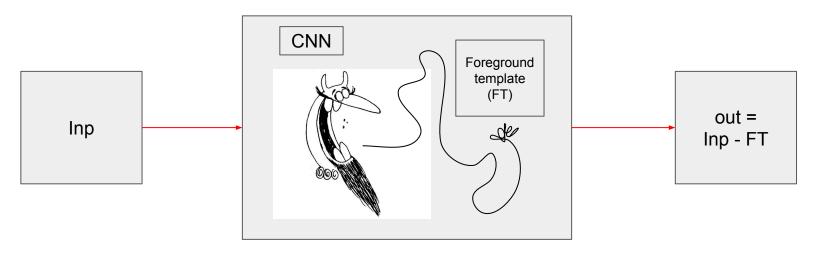




But the principal question of this research line:

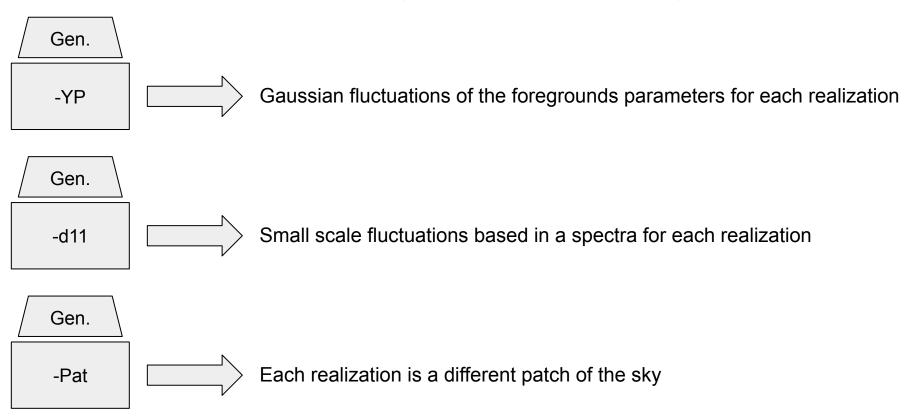
How can we be sure that the CNN is not just subtracting a learned template?

The answer of this question relies in the generalization.

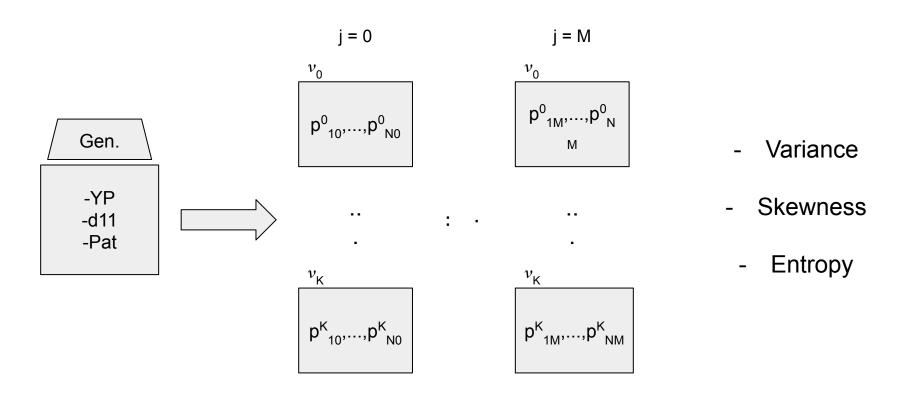


Pictorial representation of Maxwell's demon taken from a lecture given by Esteban Calzetta. I drew the elastic hand.

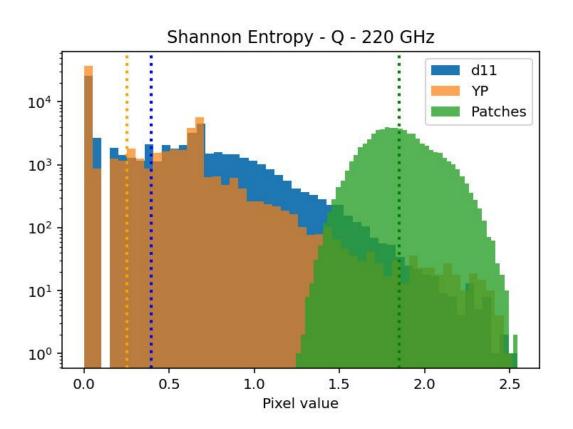
Template based foreground simulation generators



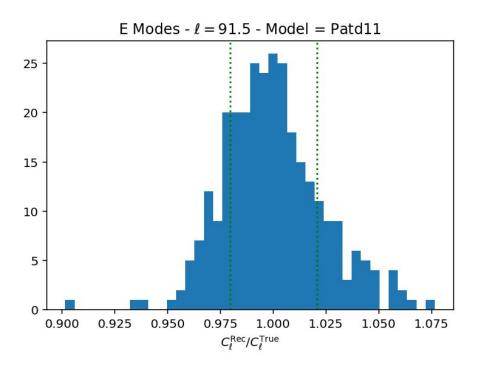
Foreground simulation generators



Shannon Entropy for our models



$$\operatorname{rat}_{\ell}^{X,i}[\mathbf{M}_{1},\mathbf{M}_{2}] = \frac{C_{\ell}^{\operatorname{Rec},X,i}[\mathbf{M}_{1},\mathbf{M}_{2}]}{C_{\ell}^{\operatorname{True},X,i}[\mathbf{M}_{2}]}$$

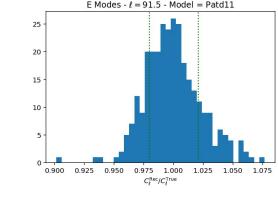


$$\operatorname{rat}_{\ell}^{X,i}[\mathbf{M}_{1},\mathbf{M}_{2}] = \frac{C_{\ell}^{\operatorname{Rec},X,i}[\mathbf{M}_{1},\mathbf{M}_{2}]}{C_{\ell}^{\operatorname{True},X,i}[\mathbf{M}_{2}]}$$

$$\operatorname{Med}_{\ell}^{X}[M_{1}, M_{2}] = \operatorname{median} \left[\operatorname{rat}_{\ell}^{X, i}[M_{1}, M_{2}]\right]_{i}$$

$$p_{\ell}^{17, X}[M_{1}, M_{2}] = \operatorname{percentile} \left[\operatorname{rat}_{\ell}^{X, i}[M_{1}, M_{2}], 17\%\right]_{i}$$

$$p_{\ell}^{83, X}[M_{1}, M_{2}] = \operatorname{percentile} \left[\operatorname{rat}_{\ell}^{X, i}[M_{1}, M_{2}], 83\%\right]_{i}$$



$$\operatorname{rat}_{\ell}^{X,i}[\mathbf{M}_{1},\mathbf{M}_{2}] = \frac{C_{\ell}^{\operatorname{Rec},X,i}[\mathbf{M}_{1},\mathbf{M}_{2}]}{C_{\ell}^{\operatorname{True},X,i}[\mathbf{M}_{2}]}$$

$$\operatorname{rat}_{\ell}^{X,i}[M_{1},M_{2}] = \operatorname{median}\left[\operatorname{rat}_{\ell}^{X,i}[M_{1},M_{2}]\right]_{i}$$

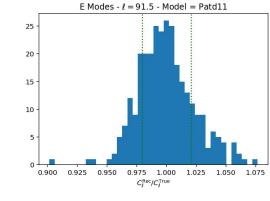
$$\operatorname{rat}_{\ell}^{X,i}[M_{1},M_{2}] = \frac{C_{\ell}^{\operatorname{Rec},X,i}[M_{1},M_{2}]}{C_{\ell}^{\operatorname{True},X,i}[M_{2}]}$$

$$p_{\ell}^{17,X}[M_{1},M_{2}] = \operatorname{percentile}\left[\operatorname{rat}_{\ell}^{X,i}[M_{1},M_{2}],17\%\right]_{i}$$

$$p_{\ell}^{83,X}[M_{1},M_{2}] = \operatorname{percentile}\left[\operatorname{rat}_{\ell}^{X,i}[M_{1},M_{2}],83\%\right]_{i}$$

$$L_{\ell}^{X}[M_{1},M_{2}] = \operatorname{Med}_{\ell}^{X}[M_{1},M_{2}] - p_{\ell}^{17,X}[M_{1},M_{2}]$$

$$U_{\ell}^{X}[M_{1},M_{2}] = \operatorname{Med}_{\ell}^{X}[M_{1},M_{2}] + p_{\ell}^{83,X}[M_{1},M_{2}]$$



$$\text{Med}_{\ell}^{X}[M_{1}, M_{2}] = \text{median} \left[\text{rat}_{\ell}^{X,i}[M_{1}, M_{2}] \right]_{i}$$

$$\text{rat}_{\ell}^{X,i}[M_{1}, M_{2}] = \frac{C_{\ell}^{\text{Rec}, X,i}[M_{1}, M_{2}]}{C_{\ell}^{\text{True}, X,i}[M_{2}]}$$

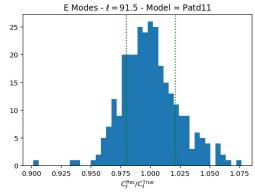
$$\text{p}_{\ell}^{17,X}[M_{1}, M_{2}] = \text{percentile} \left[\text{rat}_{\ell}^{X,i}[M_{1}, M_{2}], 17\% \right]_{i}$$

$$\text{p}_{\ell}^{83,X}[M_{1}, M_{2}] = \text{percentile} \left[\text{rat}_{\ell}^{X,i}[M_{1}, M_{2}], 83\% \right]_{i}$$

$$\Delta_{\ell}^{X}[M_{1}, M_{2}] = U_{\ell}^{X}[M_{1}, M_{2}] - L_{\ell}^{X}[M_{1}, M_{2}]$$

$$= p_{\ell}^{17,X}[M_{1}, M_{2}] + p_{\ell}^{83,X}[M_{1}, M_{2}]$$

$$U_{\ell}^{X}[M_{1}, M_{2}] = \text{Med}_{\ell}^{X}[M_{1}, M_{2}] + p_{\ell}^{83, X}[M_{1}, M_{2}]$$



$$\mathrm{rat}_{\ell}^{X,i}[\mathrm{M}_1,\mathrm{M}_2] = rac{C_{\ell}^{\mathrm{Rec},X,i}[\mathrm{M}_1,\mathrm{M}_2]}{C_{\ell}^{\mathrm{True},X,i}[\mathrm{M}_2]}$$

$$\operatorname{Med}_{\ell}^{X}[M_{1}, M_{2}] = \operatorname{median}\left[\operatorname{rat}_{\ell}^{X, i}[M_{1}, M_{2}]\right]_{i}$$

$$\operatorname{rat}_{\ell}^{X, i}[M_{1}, M_{2}] = \frac{C_{\ell}^{\operatorname{Rec}, X, i}[M_{1}, M_{2}]}{C_{\ell}^{\operatorname{True}, X, i}[M_{2}]}$$

$$p_{\ell}^{17, X}[M_{1}, M_{2}] = \operatorname{percentile}\left[\operatorname{rat}_{\ell}^{X, i}[M_{1}, M_{2}], 17\%\right]_{i}$$

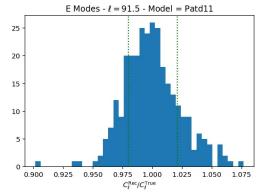
$$p_{\ell}^{83, X}[M_{1}, M_{2}] = \operatorname{percentile}\left[\operatorname{rat}_{\ell}^{X, i}[M_{1}, M_{2}], 83\%\right]_{i}$$

$$\begin{split} \Delta_{\ell}^{X}[\mathbf{M}_{1}, \mathbf{M}_{2}] &= U_{\ell}^{X}[\mathbf{M}_{1}, \mathbf{M}_{2}] - L_{\ell}^{X}[\mathbf{M}_{1}, \mathbf{M}_{2}] \\ &= p_{\ell}^{17, X}[\mathbf{M}_{1}, \mathbf{M}_{2}] + p_{\ell}^{83, X}[\mathbf{M}_{1}, \mathbf{M}_{2}] - \mathbf{M}_{\ell}^{83, X}[\mathbf{M}_{1}, \mathbf{M}_{2}]$$

$$L_{\ell}^{X}[M_{1}, M_{2}] = \operatorname{Med}_{\ell}^{X}[M_{1}, M_{2}] - p_{\ell}^{17, X}[M_{1}, M_{2}]$$

$$\mathrm{MSE}_{\ell}^X[\mathrm{M}_1,\mathrm{M}_2] = \left(\mathrm{Med}_{\ell}^X[\mathrm{M}_1,\mathrm{M}_2]\right)^2 + \left(\Delta_{\ell}^X[\mathrm{M}_1,\mathrm{M}_2]\right)^2$$

$$U_{\ell}^{X}[M_{1}, M_{2}] = \text{Med}_{\ell}^{X}[M_{1}, M_{2}] + p_{\ell}^{83, X}[M_{1}, M_{2}]$$



$$\operatorname{rat}_{\ell}^{X,i}[\mathbf{M}_{1},\mathbf{M}_{2}] = \frac{C_{\ell}^{\operatorname{Rec},X,i}[\mathbf{M}_{1},\mathbf{M}_{2}]}{C_{\ell}^{\operatorname{True},X,i}[\mathbf{M}_{2}]}$$

$$\operatorname{Med}_{\ell}^{X}[M_{1}, M_{2}] = \operatorname{median} \left[\operatorname{rat}_{\ell}^{X, i}[M_{1}, M_{2}]\right]_{i}$$

$$\operatorname{rat}_{\ell}^{X, i}[M_{1}, M_{2}] = \frac{C_{\ell}^{\operatorname{Rec}, X, i}[M_{1}, M_{2}]}{C_{\ell}^{\operatorname{True}, X, i}[M_{2}]}$$

$$p_{\ell}^{17, X}[M_{1}, M_{2}] = \operatorname{percentile} \left[\operatorname{rat}_{\ell}^{X, i}[M_{1}, M_{2}], 17\%\right]_{i}$$

$$p_{\ell}^{83, X}[M_{1}, M_{2}] = \operatorname{percentile} \left[\operatorname{rat}_{\ell}^{X, i}[M_{1}, M_{2}], 83\%\right]_{i}$$

$$p_{\ell}^{83,X}[\mathrm{M}_1,\mathrm{M}_2] = \mathrm{percentile}\left[\mathrm{rat}_{\ell}^{X,i}[\mathrm{M}_1,\mathrm{M}_2],83\%\right]_{\ell}$$

$$\begin{split} \Delta_{\ell}^{X}[\mathbf{M}_{1}, \mathbf{M}_{2}] &= U_{\ell}^{X}[\mathbf{M}_{1}, \mathbf{M}_{2}] - L_{\ell}^{X}[\mathbf{M}_{1}, \mathbf{M}_{2}] \\ &= p_{\ell}^{17, X}[\mathbf{M}_{1}, \mathbf{M}_{2}] + p_{\ell}^{83, X}[\mathbf{M}_{1}, \mathbf{M}_{2}] - \mathbf{M}_{\ell}^{83, X}[\mathbf{M}_{1}, \mathbf{M}_{2}]$$

$$L_{\ell}^{X}[M_{1}, M_{2}] = Med_{\ell}^{X}[M_{1}, M_{2}] - p_{\ell}^{17, X}[M_{1}, M_{2}]$$

$$U_{\ell}^{X}[M_{1}, M_{2}] = \operatorname{Med}_{\ell}^{X}[M_{1}, M_{2}] + p_{\ell}^{83, X}[M_{1}, M_{2}]$$

$$MSE_{\ell}^{X}[M_1, M_2] = \left(Med_{\ell}^{X}[M_1, M_2]\right)^2 + \left(\Delta_{\ell}^{X}[M_1, M_2]\right)^2$$

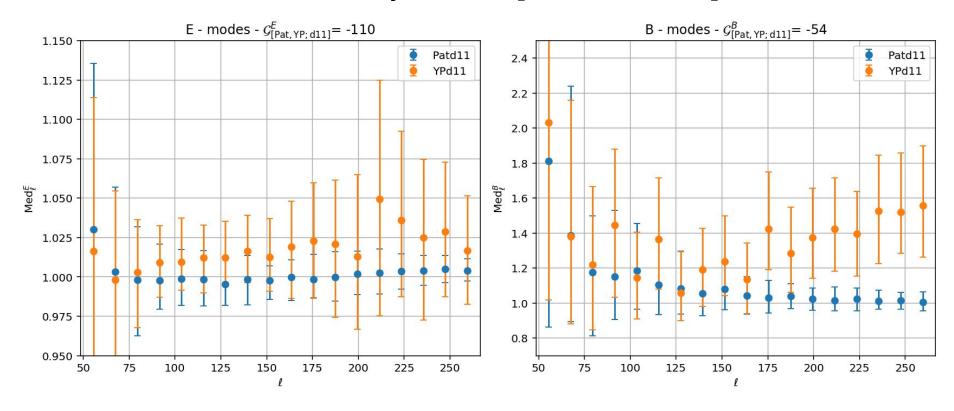
$$\mathcal{G}_{\ell}^{X}[M_{1}, M_{2}; M_{3}] = \frac{MSE_{\ell}^{X}[M_{1}, M_{3}] - MSE_{\ell}^{X}[M_{2}, M_{3}]}{MSE_{\ell}^{X}[M_{3}, M_{3}]}$$

$$\mathcal{G}_{\ell}^{X}[M_{1}, M_{2}; M_{3}] = \frac{MSE_{\ell}^{X}[M_{1}, M_{3}] - MSE_{\ell}^{X}[M_{2}, M_{3}]}{MSE_{\ell}^{X}[M_{3}, M_{3}]}$$

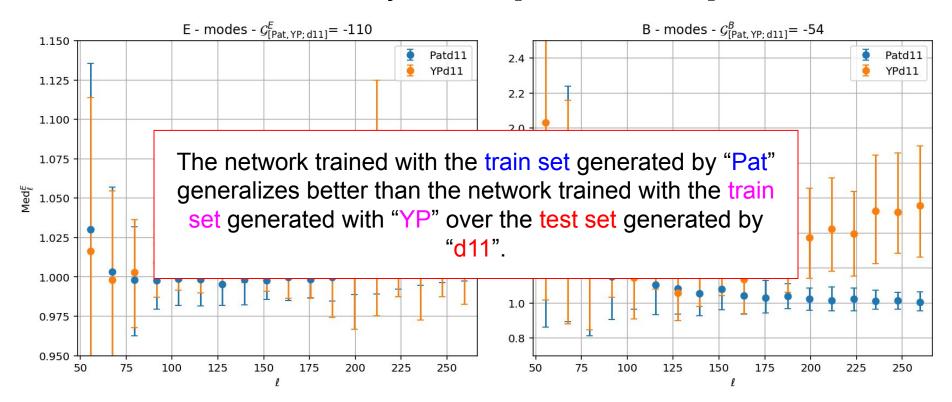
$$\mathcal{G}^{M_{1}, M_{2}; M_{3}} = \left\langle \mathcal{G}_{\ell}^{X}[M_{1}, M_{2}; M_{3}] \right\rangle_{\ell_{\min} < \ell < \ell_{\max}}$$

- If $\mathscr{G}^{M1,M2;M3}$ < 0 —> M1 generalizes better than M2 on M3
- If $\mathscr{G}^{M1,M2;M3} > 0$ —> M2 generalizes better than M1 on M3

Preliminary result: [Pat, YP; d11]



Preliminary result: [Pat, YP; d11]



Thank you for the attention!