

Comparison of the shape of the MLDF obtained from simulations and data

Varada Varma Kizakke Covilakam

Referees: A. D. Supanitsky, R. Engel

Supervisor: D. Schmidt

DDAp/DDEIT and HIRSAP Annual Meeting

14 November 2025

Recap

- Developed a method to reconstructed the mldf based on the ADC mode
- Developed a mass sensitive observable that depends on the muon density
- Reproduced the X_{max} using Delta method for the SD 750 array
- Developed a method to distinguish between pure and mixed compositions using correlation coefficients

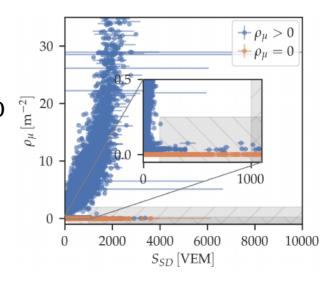
Goal

- Study the compatibility between data and simulations using the average muon ldf
- Study the evolution of the average muon density as a function of core distance at different regions of the distances.

Simulations and Data

- ◆ Phase 1 data 2018 Jan 1 to 2021 Dec 31
- Phase 2 data 2023 Jan 1 to 2025 Jan 31
- ◆ Simulations: Corsika v7.7402 with EPOS-LHC and UrQMD
- ◆ Primaries Iron, proton, Helium, Nitrogen
- **Ч** Uniform distribution \in 16.8 ≤ log(E/eV) ≤ 18.7
- **■** Isotropic distribution of zenith angles $0^{\circ} \le \theta \le 48^{\circ}$

 Candidate counters with null or small muon densities that have a paired SD counter with large signal¹.



¹GAP2023_004

Spectrum

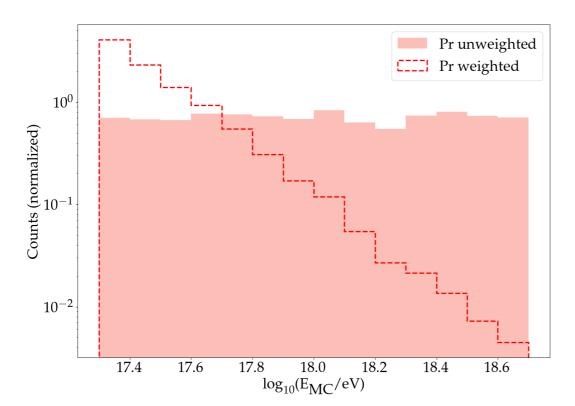


Table 6 Best-fit values of the spectral parameters (Eq. (11)). The parameter ω_{12} is fixed to the value constrained in [21]. Note that the parameters y_0 and E_{01} correspond to features below the measured energy region and are treated only as aspects of the unfolding fixed to their best-fit values to infer the uncertainties of the measured spectral parameters

Parameter	Value $\pm \sigma_{\rm stat} \pm \sigma_{\rm syst}$
J ₀ /(km ² yr sreV)	$(1.09 \pm 0.04 \pm 0.28) \times 10^{-13}$
ω_{01}	$0.49 \pm 0.07 \pm 0.34$
γ1	$3.34 \pm 0.02 \pm 0.09$
E_{12}/eV	$(3.9 \pm 0.8 \pm 1.1) \times 10^{18}$
γ_2	$2.6 \pm 0.2 \pm 0.1$
γ0	2.64 - fixed
E_{01}/eV	1.24×10 ¹⁷ - fixed
ω_{12}	0.05 - fixed

$$J(E,k) = J_0 \left(\frac{E}{10^{17}eV}\right)^{-\gamma_0} \prod_{i=0}^{1} \left[1 + \left(\frac{E}{E_{ij}}\right)^{1/\omega_{ij}}\right]^{(\gamma_i - \gamma_j)\omega_{ij}}$$

$$w(E_i) = E_i J_{\text{Auger}}(E_i)$$

$$w(E_i) = \frac{E_i J_{\text{Auger}}(E_i)}{w(E_i)}$$

$$w(E_i) = \frac{w(E_i)}{\sum_j w(E_j)} N$$

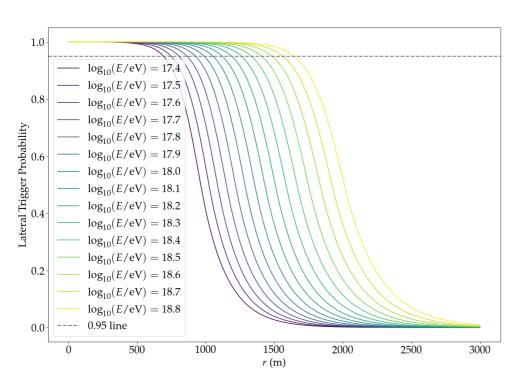
$$w(E_i) = E_i J_{\text{Auger}}(E_i)$$

$$w_i^{(\text{norm})} = \frac{w(E_i)}{\sum_j w(E_j)} N$$

Eur. Phys. J. C (2021) 81:966

Maximum distance cut: Lateral trigger probability of the surface detector

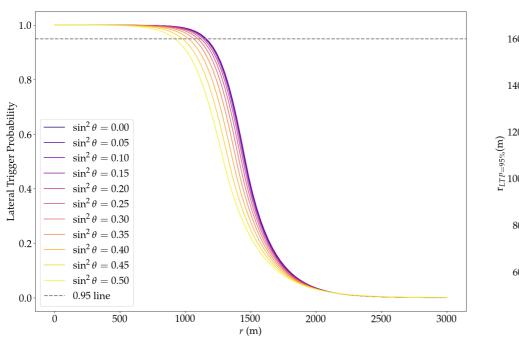
Removes upward fluctuations due to decreased trigger efficiency.

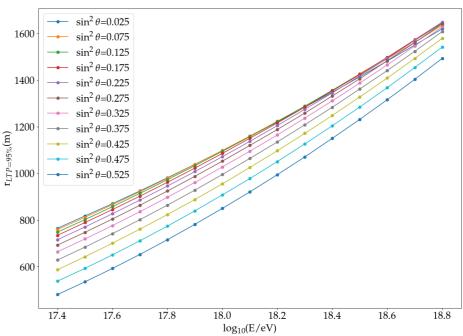


$$LTP(r) = \begin{cases} \frac{1}{1 + \exp\left(\frac{r - R_0}{\Delta R}\right)} & \text{for } r < R_0 \\ \frac{1}{2 \exp\left(\frac{r - R_0}{2\Delta R}\right)} & \text{for } r > R_0 \end{cases}$$

 R_0 and ΔR free fit parameters parameterized as a function of the energy and zenith angle²

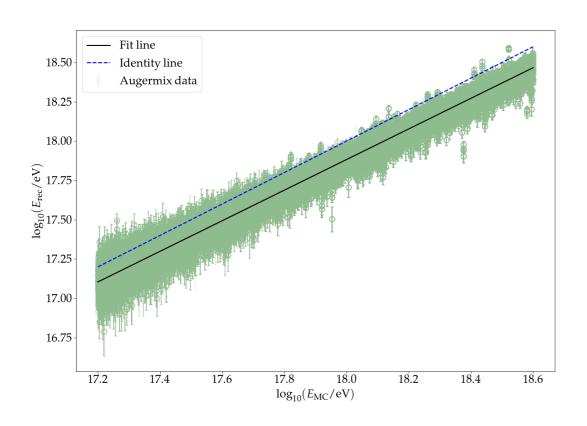
 $^{^2}$ LTP dervied from Hybrid Data GAP2018_038





distance in which the trigger probability of the tank reaches 95%

Energy correction for simulations

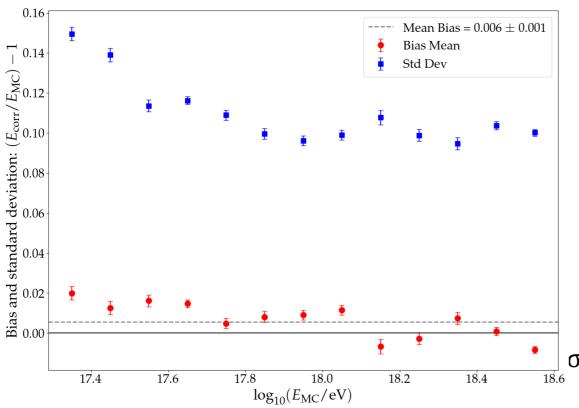


$$E = A \left(\frac{E_{\rm rec}}{E_{\rm ref}}\right)^B$$

where
$$E_{\rm ref} = 10^{18} {\rm eV}$$

$$A = (1.309 \pm 0.01) \times 10^{-36}$$
$$B = 0.9731 \pm 0.0001$$

Auger mass fractions from ICRC 2017



$$E_{\rm ratio} = \frac{E_{\rm corr}}{E_{\rm MC}} - 1$$

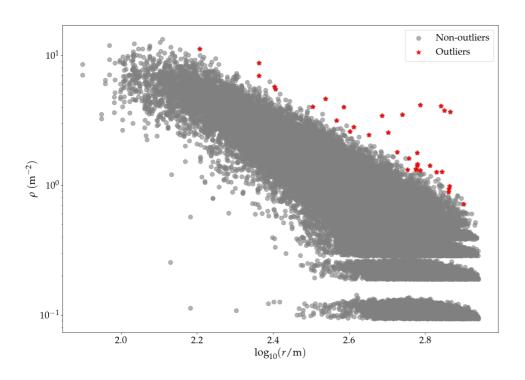
The distribution of $E_{\rm ratio}$ is fitted with a Gaussian

$$f(x) = A \exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right]$$

 $\mu \longrightarrow \text{mean bias} \quad (E_{corr}/E_{MC} - 1)$

 $\sigma \longrightarrow$ standard deviation $\sigma \approx \frac{\Delta E}{E}$

Outlier detection



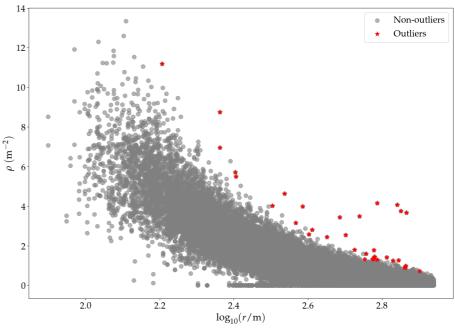
Total original data points: 1492331

Total number of outliers removed: 126

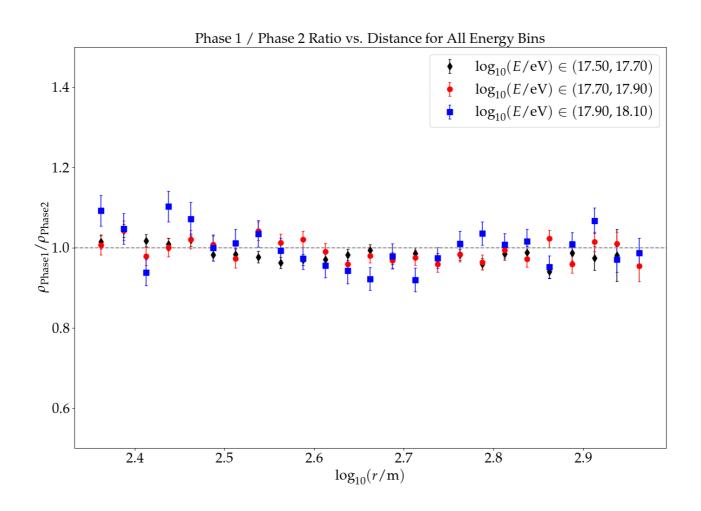
Percentage of data removed as outliers: 0.0084%

 $log_{10}(E_{rec}/eV) \in [17.5, 17.7)$ Phase 1 data

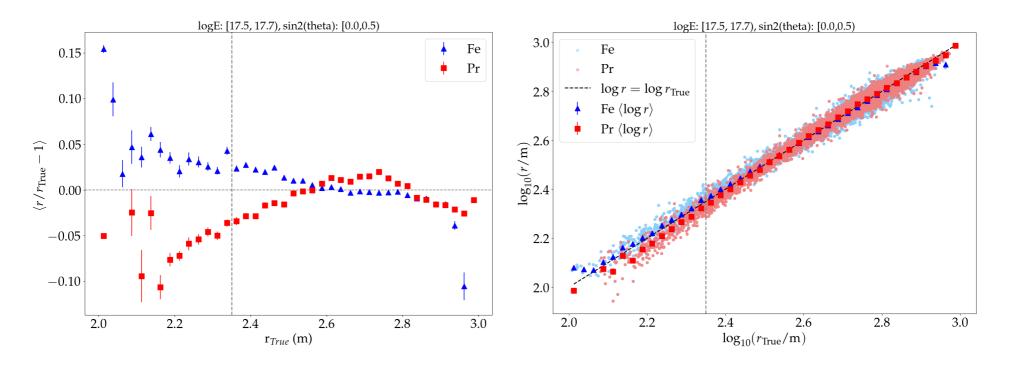
Outliers defined as $>5\sigma$ from median ($\sigma = 68\%$ central spread) Method repeated for all the energy bins



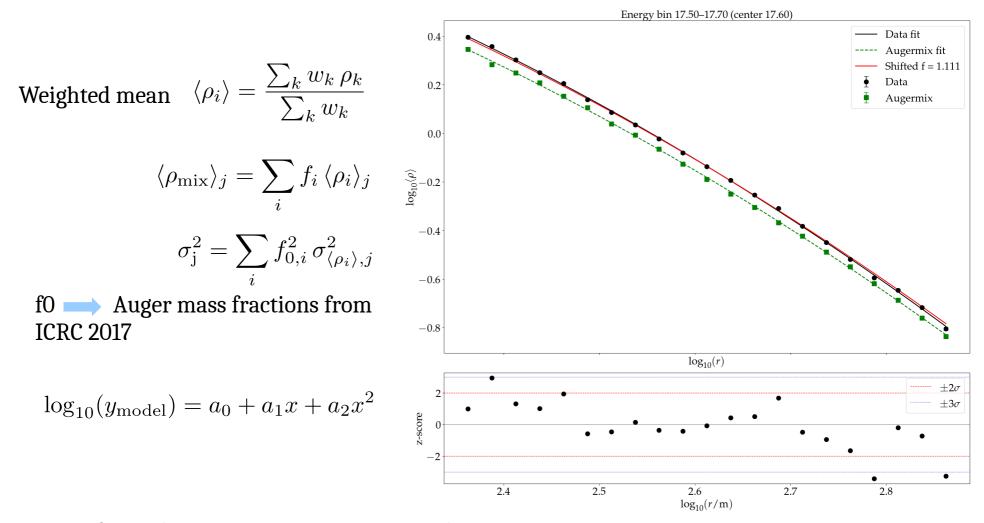
Phase 1-Phase 2 data comparison



Distance cut: fixed core



Distance cut at 2.35



Fit performed in log₁₀ space using weighted least squares

$$\rho(r) \approx f \cdot \rho_{\text{Mix}}(r)$$

 $f \rightarrow$ multiplicative correction applied to the simulated muon densities to best match the data.

$$\log_{10} \rho(r) \approx \log_{10} \rho_{\text{Mix}}(r) + \log_{10}(f)$$

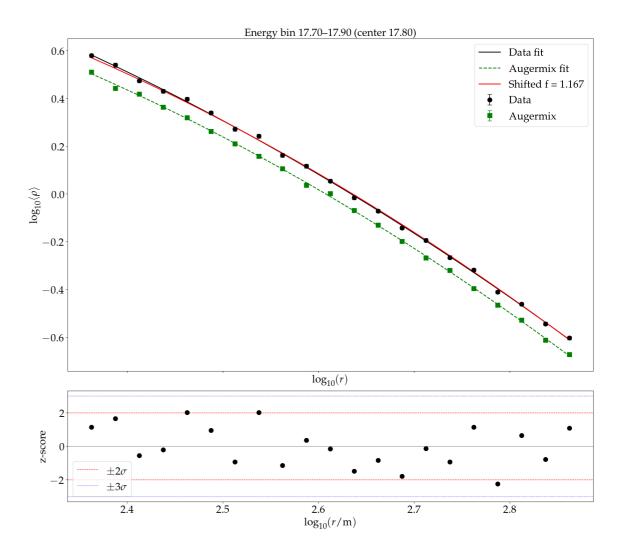
$$a = \log_{10}(f)$$

$$\chi^{2}(a) = \sum_{i=1}^{N} \left(\frac{y_{i} - (m_{i} + a)}{\sigma_{i}}\right)^{2}$$

$$y_{i} = \log_{10} \rho_{\text{data},i}$$

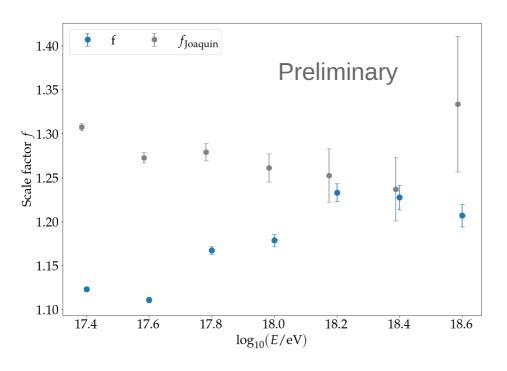
$$m_i = \log_{10} \rho_{\text{Mix},i}$$

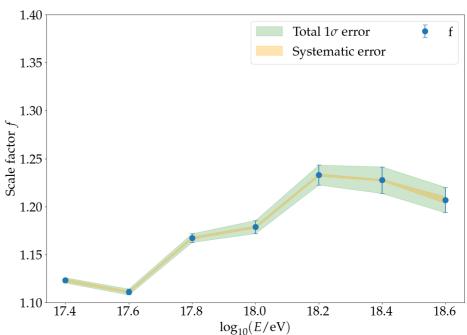
 $\sigma_i \to \text{uncertainty of } y_i$



systematics due to MLDF shape (parameter covariance)

Scale factor as a function of energy





Outlook

- Phase 1 and phase 2 data are compatible for the mldf analysis
- The data needs to be further analyzed to obtain a robust measurement of f
- Future work :
 - Include systematic errors (detector, model, energy scale, composition)

Backup

Muon energy distribution

