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Super Heavy Dark Matter

4 Supermassive particles, with mass M>10% GeV, can be easily generated in the early universe by
time-dependent gravitational fields and through gravitational (direct) coupling to the inflaton field
and/or to SM fields.

[Schrodinger (1939), Zeldovich & Starobinsky (1972), Kofman, Linde & Starobinsky (1994), Felder, Kofman & Linde (1998),
Chung, Kolb & Riotto (1998), Kuzmin & Tkachev (1998), M. Garny, M. Sandora, and M. S. Sloth (2015), E. W. Kolb and A. J.
Long (2017), Y. Mambrini and K. A. Olive (2021)]

4 They can be long-lived if their decay is inhibited by some discrete symmetry (such as R-parity for

SUSY neutralinos) weakly broken or through non-perturbative instanton effect.
[Berezinsky, Kachelriess & Vilenkin (1997), Kuzmin & Rubakov (1997)]

In this case SH relics can be dark matter candidates (SHDM)

WIMP vs SHDM
»  WIMP naturally produced in SUSY models (new physics supra-TeV, naturalness).

SHDM naturally produced during inflation/reheating, always out of local thermal equilibrium.

>
» Both require additional (weakly broken) symmetries to prevent fast decays.
>

WIMP can be experimentally tested through: production (LHC), direct detection
(underground labs), indirectly (astrophysical observations).
SHDM can be experimentally tested only indirectly through cosmological (CMB)

observations and UHECR observations.




An emerging UV scale in the SM
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v Given the LHC measured masses of Higgs boson and Top quark, the running Higgs quartic coupling A
approaches zero at a scale A; = 101°-10'2 GeV signaling a new UV scale where a possible instability of
the Higgs potential arises.

v/ This evidence can be the first sign of new physics beyond the SM at the LHC, however the extremely
slow evolution of A(p) does not exclude the possible SM extension until the Plank mass Mp=10'" GeV.
Neglecting the naturalness problem, the DM problem can be solved in the framework of the SHDM
approach with the dark sector scale corresponding to A;.



Primordial gravitational waves
v Being out of local thermal equilibrium Iy o

2
SHDM naturally produces primordial Vig) = %gbﬁ Vi~ TAST Mpy ~ Mgy (TL)
gravitational waves, imprinted in the CMB. ’
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4 the observation of a non-zero fraction of tensor modes in the CMB fluctuations pattern, already at the
level of 1073, would confirm that the production of SHDM particles in the early universe is a viable
mechanism to explain the DM problem, assuring a density of SHDM today at the observed level.



SHDM decay
X —qq — N,v,v,U X — v

‘/Super-weak coupling between SHDM and the SM sectors
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SHDM-SM interaction operator X©®

2n—8
X0 — Vn A axe — ggg'@
47TMXoéX@ MX 4

being V,, a phase space factor.

‘/Instanton induced decay

Retaining the hypothesis that the only interaction between SHDM and SM sectors is gravitational. In
non-abelian gauge theories (in the dark sector) even stable particles in the perturbative domain will in
general eventually decay due to non-perturbative effects. Such effects, known as instantons, provide
the occurrence of quantum tunneling between distinct classes of vacua, forcing the fermion fields to
evolve during the transitions and leading to the generation of particles depending on the associated
anomalous symmetries.
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SHDM contribution to UHECR

v SHDM accumulates in the halo of our own
galaxy with an over-density 6 given by:

UHECR flux
1

Jsapm(F,0) =

Particle Physics and Cosmology

Fix the spectrum and mass composition.
The observed flux selects a sub-space
of the SHDM parameter space, through

(Mx,Tx)

connected to cosmology and particle physics
through H, €, 1, ax , 0xe.

signature of the model
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Astrophysics

Galactic DM halo fixes the geometrical
behavior of the SHDM emission, (increased
emission from the GC direction)

1o

nx(R) = (R/Rs)*(1+ R/Ry)3

a=1 NFW, a=3/2 Moore density profile

signature of the model



From SHDM to UHECR — hadrons
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X0

Auger data constrains on My and 1y

v By imposing the Auger observational limits on the fluxes of N, vy, v it is possible to place stringent
limits on My and tx.

v Depending on the assumptions on the decaying mechanism (perturbative or instanton), the limits
are on the mass dimension and coupling n, agx of the perturbative coupling or to the non-abelian
gauge coupling ax in the dark sector (instanton decay).

Auger Collaboration PRL 130 (2023) 6, 061001, PRD 107 (2023) 4, 042002
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Cosmology parameters

v Combining the limits from Auger data with the
requirement of the correct abundance of SHDM
today it is possible to constrain cosmological m-“é

parameters. 10
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Coupling with a sterile neutrino sector

v A particular class of models meet the lifetime
requirements of SHDM by coupling it to a sector of

sterile neutrinos [reference model: Dudas, Heurtier,
Mambrini, Olive, Pierre (2020)].

v In the reference model the dominant decay channel is
a three-body decay Vi

0mm> /v,

X _ “%(9%1 My 2(@
hviva = 19223 \ Mp v
V2

v/ UHE SM neutrinos and photons are expected to be
the final products of the decay. Using the sensitivity
of Auger to these particles it is possible to constrain
the model.
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Lorentz Invariance Violations and the Quantum Gravity Regime

P The idea of testing Lorentz Invariance (LI) through UHE
-t & CR and gamma ray data was inspired by A.F. Grillo, who
p X ' suggested many of the analysis presented here.

v Different approaches to Quantum Gravity (QG) predict departures from Lorentz Invariance (LI) at

extreme energy scales (above Planck mass Mp=1.2X10'° GeV) .
[For a review see Addazzi+ Progress in Particle and Nuclear Physics, Volume 125, July 2022, 103948, arXiv:2111.05659v2]

iolations may seem hard to accept but LI is a property of Space-Time and Space-Time in

v LI Violations (LIV) may seem hard pt but LI is a property of Space-Time and Space-Time i
QG is a derived concept. At some very small scales (above the Plack length I~ 1.6X10733 cm) the
structure of Space-Time becomes undefined.

v/ Effective field theories in which the relativity principle is violated, i.e. a preferred reference frame
arises, at scales A = Mp/n (with n LIV parameter).
p/n (withn LIV p ) L=Lo+ Less(A)

4 Energy momentum conservation, with modified dispersion relations:
B2 = p? = m?[1 + g(E/A)] + E2f(E/A)
» g terms (conformal LIV), renormalizable, difficult to test experimentally

» fterms non-renormalizable, experimental tests possible



Lorentz Invariance Violations and UHE particles propagation

v Using modified dispersion relations with
energy-momentum conservation, only
kinematical thresholds are affected.

v Violations can be particle dependent, i.e.
the LIV parameter is n; with i=y, N, n*, n°

v Most relevant LIV effects are on threshold
processes

By expanding f(E/A)
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Electromagnetic sector Photons propagation
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Hadronic sector UHECR propagation

10°

v Relevant LIV scenarios for UHECR are those with 6>0.

Thresholds for photopion production and photodisintegration
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Conclusions

The Auger observations have an unprecedented potential to test new physics BSM:
stringent limits on the SHDM parameters My and Ty and the LIV parameter 0.

The SHDM hypothesis connects UHECR observations with cosmological models
(My) and models BSM of particle physics (Tx).

SHDM can be discovered by future precise cosmological measurements (CMB
tensor modes) combined with the Auger observation of UHECR.

Larger statistics at the highest energies are instrumental to probe the phase space of
SHDM and LIV models.

More on BSM physics with UHECR in the Olivier review talk
this afternoon

Thank you



