Astrophysical models to interpret the Pierre Auger Observatory data

Juan Manuel González for the Pierre Auger Collaboration

CONICET

- Pierre Auger Observatory measurements of the spectrum and composition show several features
- Which is their origin?
- We want to infer the source properties for some simple astrophysical scenarios

COMBINED FIT OF SPECTRUM AND COMPOSITION

1) Model of the sources

$$\dot{Q}(z, E) = \dot{Q}_0 \xi(z) \sum_A f_A \left(\frac{E}{E_0}\right)^{-\gamma} f_{\text{cut}} \left(\frac{E}{Z_A R_{\text{cut}}}\right)$$
Source evolution $\xi(z) = (1+z)^m$
5 elements (H, He, N, Si, Fe)

$$f(E, Z_A, R_{\text{cut}}) = \begin{cases} 1 & E \leq Z_A R_{\text{cut}} \\ \exp\left(1 - \frac{E}{Z_A R_{\text{cut}}}\right) & E > Z_A R_{\text{cut}} \end{cases}$$

2) CRs propagated with SimProp (JCAP 11 (2017) 009): interactions with CMB & Gilmore EBL radiation backgrounds, TALYS photodisintegration

3) Air shower interactions modelled with EPOS-LHC or Sibyll2.3d

SPECTRUM ($N_{data} = 24$)

Fit Procedure $L_J = \prod_i \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(J_i^{mod} - J_i^{obs})^2}{2\sigma_i^2}\right)$

 X_{max} DISTRIBUTIONS (N_{data} = 329) > 0.24 > 0.30 19 < lg(E/eV) < 19.1 0.22 18.7 < lg(E/eV) < 18.8 0.20 0.25 0.18 0.16 0.20 0.14 0.12 0.15 0.10 0.08 0.10 0.06 0.05 0.04 0.02 0.00 0.00 700 800 1000 650 700 750 800 850 900 950 1000 600 900 1100 $X_{max} [g cm^{-2}]$ $X_{max} [g cm^{-2}]$ A. Yushkov, for Auger, PoS ICRC2019 (2020) 482

$$L_{X_{\max}} = \prod_{i} n_{i}^{obs} \prod_{j} \frac{1}{k_{i,j}^{obs}} (G_{i,j}^{mod})^{k_{i,j}^{obs}}$$

 $G_{i,j}^{mod}$: Gumbel + resolution & acceptance

Minimize the deviance

$$D = -2ln\left(\frac{L_J}{L_J^{sat}}\right) - 2ln\left(\frac{L_{X_{max}}}{L_{X_{max}}^{sat}}\right)$$

• Fit parameters: γ , R_{cut} and elemental fractions for both components

JCAP 05(2023)024

	Scen	nario 1	Scenario 2			
Galactic contribution (at Earth)	pu	re N				
$J_0^{\rm Gal}/({\rm eV^{-1}km^{-2}sr^{-1}yr^{-1}})$	(1.06 ± 0)	$.04) \times 10^{-13}$				
$\log_{10}(R_{\rm cut}^{\rm Gal}/{\rm eV})$	17.48	± 0.02				
EG components (at the escape)	LE	HE	LE	HE		
$L_0/(10^{44}{ m ergMpc^{-3}yr^{-1}})$	6.54 ± 0.36	5.00 ± 0.35	11.35 ± 0.15	5.07 ± 0.06		
γ	3.34 ± 0.07	-1.47 ± 0.13	3.52 ± 0.03	-1.99 ± 0.11		
$\log_{10}(R_{\rm cut}/{\rm eV})$	>19.3	18.19 ± 0.02	>19.4	18.15 ± 0.01		
$I_{ m H}(\%)$	100 (fixed)	0.0 ± 0.0	48.7 ± 0.3	0.0 ± 0.0		
$I_{ m He}(\%)$		24.5 ± 3.0	7.3 ± 0.4	23.6 ± 1.6		
$I_{ m N}(\%)$		68.1 ± 5.0	44.0 ± 0.4	72.1 ± 3.3		
$I_{ m Si}(\%)$		4.9 ± 3.9	0.0 ± 0.0	1.3 ± 1.3		
$I_{ m Fe}(\%)$		2.5 ± 0.2	0.0 ± 0.0	3.1 ± 1.3		
$D_J (N_J)$	48.6	5 (24)	56.6 (24)			
$D_{X_{\max}}(N_{X_{\max}})$	537.4	4(329)	516.5	(329)		
D(N)	586.0) (353)	573.1	(353)		

- Hard HE spectra (γ<-1.5)
- Instep due to He suppression
- N flux dominates the above the instep
- Si and Fe dominate at the highest energies
- Pure proton LE composition with a N-dominated
 Galactic component better describes spectrum data
- Mixed LE composition with no galactic component better describes all data

SOURCES' COSMOLOGICAL EVOLUTION

- **Strong HE evolution disfavoured** (too many secondaries)
- m=0 HE & m=3 LE evolution slightly favoured
- Hard HE spectrum for all the cosmological evolutions considered (γ <-1.4)

INCLUDING THE MAGNETIC HORIZON EFFECT

SPECTRUM AT THE SOURCES SPECTRUM AT EARTH DEPTH OF SHOWER MAXIMA 10^{31} 103 cm⁻²] ∝ E^{-3.5} $\underbrace{ \begin{bmatrix} 10^{30} \\ {}_{\text{E}}^{-1} \text{Mbc}_{-3}^{-2} \end{bmatrix} }_{10^{29}} \underbrace{ Mbc}_{-3} \underbrace{ \begin{bmatrix} 10^{29} \\ {}_{\text{E}}^{-1} \end{bmatrix} }_{10^{27}} \underbrace{ \begin{bmatrix} 10^{27} \\ {}_{10^{27}} \end{bmatrix} }_{10^{27}} \underbrace{ \begin{bmatrix} 10^{27} \\ {}_{10^{27}}$ yr⁻¹] 10³⁰ $J \cdot \mathrm{E}^3 [eV^2 \, \mathrm{km}^{-2} \, \mathrm{sr}^{-1}$ Si PROPAGATION Fe 10^{37} 19.5 18.0 18.5 $\log_{10}(E/eV)$ - A = 1-2 < A < 4∝ **E**²∕ $5 \le A \le 22$ $23 \le A \le 38$ 1036 - A≥39 19.5 18.519.0 20.0 ğ 1026 18.0 18.0 18.5 19.0 19.5 20.0 log10(E/eV) $\log_{10}(E/eV)$ 18.0 18.5 19.0 19.5 20.0 log₁₀(E/eV)

- Very hard spectrum required for the high-energy component
- Can we explain this as a consequence of the magnetic horizon effect (MHE)?
- We know sources must have a finite density & that Extra-Galactic Magnetic Fields are present
- MHE: Low energy particles do not reach Earth if the diffusion time from the closest sources is larger than the age of the sources

MAGNETIC HORIZON EFFECT

- Extragalactic magnetic fields (EGMF) between Earth and closest sources modelled as *turbulent & isotropic* with rms amplitude (*B_{rms}*) & coherence length (*L_{cob}*)
- Critical energy E_{crit} such that: $r_L(E_{crit}) = L_{coh} \longrightarrow R_{crit} \equiv E_{crit}/Z = 0.9 \frac{B_{rms}}{nG} \frac{L_{coh}}{M_{DC}} EeV$
- Uniform source density, intersource distance d_s
- MHE suppresses the flux at low energies

Proton flux at Earth.

COMBINED FIT OF SPECTRUM AND COMPOSITION

1) Model of the sources $\dot{Q}(z,E) = \dot{Q}_0 \xi(z) \sum_{A} f_A \left(\frac{E}{E_0}\right)^{-\gamma} f_{\text{cut}} \left(\frac{E}{Z_A R_{\text{cut}}}\right)$ Δ : steepness of the cutoff (1, 2, or 3) 5 elements (H, He, N, Si, Fe)

2) CRs propagated with SimProp (JCAP 11 (2017) 009): interactions with CMB & Gilmore EBL radiation backgrounds, TALYS photodisintegration

4) Air shower interactions modelledwith EPOS-LHC or Sibyll2.3d

COMBINED FIT OF SPECTRUM AND COMPOSITION

1) Model of the sources $\dot{Q}(z,E) = \dot{Q}_0\xi(z)\sum_{A} f_A \left(\frac{E}{E_0}\right)^{-\gamma} f_{\rm cut} \left(\frac{E}{Z_A R_{\rm cut}}\right)$ Source evolution $\xi(z)$: no evolution (NE) or star formation rate (SFR) $f_{\rm cut}(E, Z_A, \mathbf{R}_{\rm cut}) = {\rm sech} \left[\left(\frac{{\rm E}}{{\rm Z}_{\rm A} {\rm R}_{\rm cut}} \right)^{\Delta} \right]$ Δ : steepness of the cutoff (1, 2, or 3) 5 elements (H, He, N, Si, Fe)

2) CRs propagated with SimProp (JCAP 11 (2017) 009): interactions with CMB & Gilmore EBL radiation backgrounds, TALYS photodisintegration

3) Account for EGMF multiplying by the suppression factor $G(E/E_{crit}, X_s)$

4) Air shower interactions modelled
with EPOS-LHC or Sibyll2.3d

FIT INCLUDING MHE AS A FUNCTION OF X_s

Δ =2, EPOS, NE-NE Δ =3, EPOS, NE-NE 20 2 2 20 NE-NE R_{crit} [EeV] 1.6 1.6 [FeV] 700 ^{1.2} H 1.2**T** SibyII, ∆=1 Rcrit EPOS, $\Delta = 2$ Sibyll, A=2 -> EPOS, A=3 SibvII, $\Delta=3$ 680 0.8 0.8 9.5 Xs^{-1.2} 5 $9.5X_{s}^{-1.1}$ 0.4 0.4 660 ш 640 Е О 6 0 2 X_S 1.5 2.5 3 3.5 0.5 1.5 2 2.5 X_s 3.5 0.5 1 3 1 $\Delta = 2$, Sibyll, NE-NE Δ =3, Sibyll, NE-NE 600 20 2 20 R_{crit} [EeV] 1.6 580 ^{1.2} H 560 Rcrit 2 Xs 0.5 1.5 2.5 3.5 3 1 0.8 0.8 12.1 X_s^{-1.3} 12.8 X_s^{-1.3} 5 0.4 0.4 ∃ no B 0 2 2.5 3 3.5 X_s 0.5 1 1.5 2 2.5 3 3.5 X_s 4 0.5 1 1.5

• Larger X results in softer spectra and smaller R rit

• When MHE is relevant $(X_s > 1)$, best fit for $X_s R_{crit} \sim 10$ EeV

• Deviance is almost degenerate for $X_s \ge 2$

JCAP07(2024)094

11

BEST FIT RESULTS

with EGMF, NE-NE

	EPOS-LHC							Sibyll 2.3d						
Δ	$\gamma_{\rm H}$	$R_{\rm cut}^{\rm H}$	$\gamma_{\rm L}$	$R_{\rm cut}^{\rm L}$	$X_{\rm s}$	$R_{\rm crit}$	D	$\gamma_{\rm H}$	$R_{\rm cut}^{\rm H}$	$\gamma_{ m L}$	$R_{\rm cut}^{\rm L}$	$X_{\rm s}$	$R_{\rm crit}$	D
		[EeV]		[EeV]		[EeV]	(N = 353)		[EeV]		[EeV]		[EeV]	(N = 353)
1	-2.19	1.35	3.54	> 60	0	_	572	-1.67	1.42	3.37	2.21	0	_	660
2	1.03	6.02	3.62	> 51	> 3.2	1.97	583	1.35	6.22	3.53	> 25	> 3.1	1.54	635
3	1.43	7.50	3.69	> 61	2.8	2.79	614	2	7.50	3.62	> 31	2.6	3.77	640
							SFR-NE							
1	-2.09	1.39	3.24	> 63	0	-	578	-1.64	1.44	3.03	2.89	0	-	665
2	1.12	6.14	3.33	> 61	> 3.5	2.11	586	1.45	6.29	3.21	> 37	> 3.2	1.67	635
3	1.49	7.52	3.41	> 57	2.7	3.15	617	2.07	7.49	3.31	> 33	2.8	3.52	637

 $\Delta = 3$, EPOS, NE-NE $\Delta = 3$, Sibyll, NE-NE 10^{38} 10^{38} $[eV^2 \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}]$ Y [eV² km⁻ • $3 \le Z \le 8$ $3 \le Z \le 8$ $9 \le Z \le 15$ $9 \le Z \le 15$ - $16 \le Z \le 26$ 18.519.019.520.020.518.519.019.5 20.018.0 $\log_{10}(E/eV)$ $\log_{10}(E/eV)$ log (E/eV) log₁₀^{19.0} log (E/eV) log (E/eV) primaries

Δ=1 cutoff leads to results close
to the case with B=0

20.5

- Steeper cutoffs, produce softer HE spectra (γ>1)
- Sibyll, Δ=3 produces a HE spectrum reaching γ=2, consistent with expectations from diffusive shock acceleration
- SFR evolution of the LE component hardens the spectrum by about 0.3 units with a small effect in deviance

EFFECT OF SYSTEMATIC UNCERTAINTIES

- When including EGMF the fit generally improves for a positive shift in energy and a negative shift in X_{max}
- The smallest deviance is reached for Δ=3 cutoff, ΔE/E=+14% & ΔX_{max}=-σ

850

800

750 Deviance

650

600

550

850

800

750

700 Deviance

650

600

550

γ_μ≈2 for best fit scenarios

 Positive shifts in X_{max} are disfavoured by about a 100 units

EFFECT OF SYSTEMATIC UNCERTAINTIES

- When including EGMF the fit generally improves for a positive shift in energy and a negative shift in X_{max}
- The smallest deviance is reached for Δ=3 cutoff, ΔE/E=+14% & ΔX_{max}=-σ

γ_H≈2 for best fit scenario

 Positive shifts in X_{max} are disfavoured by about a 100 units

SMALL SCALE ANISOTROPIES IN ARRIVAL DIRECTIONS (AD)

- Most significant anisotropy above 32 EeV in the CenA region, where also some starburst galaxies (SBG) lie
- Look for best fit to spectrum + composition + AD flux maps from possible source catalogs

INCLUDING THE ARRIVAL DIRECTIONS IN THE COMBINED FIT

JCAP01(2024)022

X_{max} distributions

10^{19.4} eV

700

900

10^{19.6} eV

700

900

800

900

- Poissonian likelihood
- Spectrum fitted above 10 EeV
- Modified Gumbel functions to include resolution & acceptance

800

- Multinomial likelihood
- EPOS-LHC model

800

 $X_{\rm max}$ / g cm⁻²

• E > 10 EeV

10^{19.2} eV

700

- Construct flux maps for each energy bin
- Contrast with arrival direction data
- E > 16 EeV

SIGNAL FRACTION & ARRIVAL DIRECTIONS

- Model parameters:
 - \circ signal fraction at 40 EeV f_{0}
 - catalogue contribution (energy dependent)

 arrival direction blurring due to magnetic fields (rigidity dependent)

$$\delta = \frac{\delta_0}{R/10 EeV}$$

		Cen A, $m =$	= 0 (flat)	Cen A, $m =$	3.4 (SFR)	$\mathbf{SBG},m=3.4\;(\mathrm{SFR})$		
:20112		posterior	MLE	posterior	MLE	posterior	MLE	
	γ	$-1.67^{+0.48}_{-0.47}$	-2.21	$-3.09^{+0.23}_{-0.24}$	-3.05	$-2.77^{+0.27}_{-0.29}$	-2.67	
	$\log_{10}(R_{\rm cut}/{\rm V})$	$18.23\substack{+0.04\\-0.06}$	18.19	$18.10\substack{+0.02\\-0.02}$	18.11	$18.13\substack{+0.02 \\ -0.02}$	18.13	
	f_0	$0.16\substack{+0.06 \\ -0.14}$	0.028	$0.05\substack{+0.01\\-0.03}$	0.028	$0.17\substack{+0.06 \\ -0.08}$	0.19	
	$\delta_0/^\circ$	$56.5^{+29.4}_{-12.8}$	16.5	$27.6^{+2.7}_{-16.3}$	16.8	$22.2^{+5.3}_{-4.0}$	24.3	
	$I_{ m H}$	$5.9^{+2.5}_{-1.7} imes 10^{-2}$	$7.1 imes 10^{-2}$	$8.3^{+2.0}_{-8.3} imes 10^{-3}$	1.6×10^{-5}	$6.4^{+1.3}_{-6.4} imes 10^{-3}$	$4.3 imes 10^{-5}$	
	$I_{ m He}$	$2.3^{+0.3}_{-0.5} imes 10^{-1}$	$1.9 imes 10^{-1}$	$1.3^{+0.2}_{-0.2} \times 10^{-1}$	$1.4 imes 10^{-1}$	$1.7^{+0.3}_{-0.4}\times10^{-1}$	$1.8 imes 10^{-1}$	
	$I_{ m N}$	$6.3^{+0.3}_{-0.3} imes 10^{-1}$	$6.2 imes 10^{-1}$	$7.4^{+0.3}_{-0.3} \times 10^{-1}$	$7.3 imes 10^{-1}$	$7.4^{+0.3}_{-0.3} imes 10^{-1}$	$7.4 imes 10^{-1}$	
	$I_{ m Si}$	$6.5^{+3.6}_{-3.3}\times10^{-2}$	9.9×10^{-2}	$9.2^{+3.2}_{-2.3} \times 10^{-2}$	$1.1 imes 10^{-1}$	$5.7^{+2.5}_{-3.1} imes 10^{-2}$	$5.4 imes 10^{-2}$	
	$I_{ m Fe}$	$1.6^{+0.7}_{-1.0} \times 10^{-2}$	2.0×10^{-2}	$2.5^{+0.8}_{-0.9}\times10^{-2}$	2.3×10^{-2}	$2.5^{+0.8}_{-0.9}\times10^{-2}$	$2.3 imes 10^{-2}$	
	$\log b$	-264.0 ± 0.2		-272.6 ± 0.2		-266.9 ± 0.1		
	$\boldsymbol{D_E} \ (N_J = 14)$		22.3		28.5		33.3	
	$\boldsymbol{D}_{\boldsymbol{X}_{\max}} (N_{X_{\max}} = 74)$		124.9		130.6		126.2	
	D		147.2		159.1		159.5	
	$\log \mathcal{L}_{ m ADs}$		10.5		10.4		13.3	
	$\log \mathcal{L}$		-239.1		-245.1		-242.4	

- CenA with flat evolution offers the best description of the data
- Hard spectral index

R

- catalogue contribution at 40 EeV between ~3% and 20%
- $\delta_0 > 10^{0}$ magnetic blurring for all scenarios
- Composition dominated by mid-mass nuclei

		Cen A, m =	= 0 (flat)	Cen A, $m =$	3.4 (SFR)	$\mathbf{SBG},m=3.4\;(\mathrm{SFR})$		
ESULIS		posterior	MLE	posterior	MLE	posterior	MLE	
	γ	$-1.67\substack{+0.48\\-0.47}$	-2.21	$-3.09^{+0.23}_{-0.24}$	-3.05	$-2.77^{+0.27}_{-0.29}$	-2.67	
	$\log_{10}(R_{\rm cut}/{\rm V})$	$18.23\substack{+0.04 \\ -0.06}$	18.19	$18.10\substack{+0.02 \\ -0.02}$	18.11	$18.13\substack{+0.02 \\ -0.02}$	18.13	
	f_0	$0.16\substack{+0.06 \\ -0.14}$	0.028	$0.05\substack{+0.01 \\ -0.03}$	0.028	$0.17\substack{+0.06 \\ -0.08}$	0.19	
	$\delta_0/^\circ$	$56.5^{+29.4}_{-12.8}$	16.5	$27.6^{+2.7}_{-16.3}$	16.8	$22.2^{+5.3}_{-4.0}$	24.3	
	$I_{ m H}$	$5.9^{+2.5}_{-1.7} imes 10^{-2}$	$7.1 imes 10^{-2}$	$8.3^{+2.0}_{-8.3}\times10^{-3}$	1.6×10^{-5}	$6.4^{+1.3}_{-6.4} imes 10^{-3}$	$4.3 imes 10^{-5}$	
	$I_{ m He}$	$2.3^{+0.3}_{-0.5}\times10^{-1}$	$1.9 imes 10^{-1}$	$1.3^{+0.2}_{-0.2} imes 10^{-1}$	$1.4 imes 10^{-1}$	$1.7^{+0.3}_{-0.4}\times10^{-1}$	$1.8 imes 10^{-1}$	
	$I_{ m N}$	$6.3^{+0.3}_{-0.3} imes 10^{-1}$	$6.2 imes 10^{-1}$	$7.4^{+0.3}_{-0.3} imes 10^{-1}$	$7.3 imes 10^{-1}$	$7.4^{+0.3}_{-0.3} imes 10^{-1}$	$7.4 imes 10^{-1}$	
	$I_{ m Si}$	$6.5^{+3.6}_{-3.3}\times10^{-2}$	9.9×10^{-2}	$9.2^{+3.2}_{-2.3} \times 10^{-2}$	$1.1 imes 10^{-1}$	$5.7^{+2.5}_{-3.1} imes 10^{-2}$	$5.4 imes 10^{-2}$	
	$I_{ m Fe}$	$1.6^{+0.7}_{-1.0}\times10^{-2}$	$2.0 imes 10^{-2}$	$2.5^{+0.8}_{-0.9}\times10^{-2}$	2.3×10^{-2}	$2.5^{+0.8}_{-0.9}\times10^{-2}$	$2.3 imes 10^{-2}$	
	$\log b$	-264.0 ± 0.2		-272.6 ± 0.2		-266.9 ± 0.1		
	$\boldsymbol{D_E} \ (N_J = 14)$		22.3		28.5		33.3	
	$\boldsymbol{D}_{\boldsymbol{X}_{\max}} \ (N_{X_{\max}} = 74)$		124.9		130.6		126.2	
	D		147.2		159.1		159.5	
	$\log \mathcal{L}_{ m ADs}$		10.5		10.4		13.3	
	$\log \mathcal{L}$		-239.1		-245.1		-242.4	

- CenA with flat evolution offers the best description of the data
- Hard spectral index

R

- catalogue contribution at 40 EeV between ~3% and 20%
- $\delta_0 > 10^{0}$ magnetic blurring for all scenarios
- Composition dominated by mid-mass nuclei

• Cen A contribution to the flux grows with energy (reaches ~10%) with large uncertainties

CONCLUSIONS

- The observed features of the **spectrum and composition data** can be described with **two mixed composition extragalactic components**
- Hard HE spectrum & flat cosmological source evolutions are favoured if MHE is not included
- For $\Delta=2$ & 3 and $X_s \gtrsim 2$ we found scenarios where the magnetic horizon plays an important role with better deviance than for B=0, and with softer spectral index for the HE component ($\gamma \in [1,2]$)
- Sibyll2.3d leads to spectral indices for the HE component close to 2 when MHE is included
- Requires large inter-source distances and strong magnetic fields between us and the closest sources

$$X_{\rm s}R_{\rm crit} \simeq 5 \ {\rm EeV} \frac{d_{\rm s}}{20 \,{\rm Mpc}} \frac{B_{\rm rms}}{50 \,{\rm nG}} \sqrt{\frac{L_{\rm coh}}{100 \,{\rm kpc}}}$$

- Catalogue sources contribute between ~3% to ~20% to the flux at 40 EeV
- Magnetic blurring for protons at 10 EeV $\delta_{\rm o}{>}10^{\rm 0}$

Thank you!

Backup slides

NEUTRINOS' FLUX

- m_{HE}=0 for all scenarios
- Dominant contribution from LE component, which has steep spectrum and large cutoff
- Peak at 10⁷ GeV due to pion-photoproduction on the EBL
- For realistic scenarios, predicted flux lower than present observations

Effect of the cutoff shape on the injected spectra

Notice how the parameters combine to produce a similar shape at the energy at which each element is dominant

EXTRAGALACTIC MAGNETIC FIELDS EXPECTATIONS

Median magnetic field strength |B| as function of over-density $\rho / \langle \rho \rangle$ for a number of MHD models with identical dynamo physics, starting with different strengths of the primordial magnetic field B0, indicated by the label in μ G

Hackstein, Brüggen, Vazza & Rodrigues, MNRAS (2020) 498 4811

Required magnetic fields close to the maximum values

• Scenarios with magnetic horizon require strong magnetic fields within the Local Supercluster and large inter-source separation (low source density)

Y-AGN MODEL

- AGN model worsens the fit (smaller likelihood)
- $\gamma \approx -3.5$ (very hard)
- f₀≈15%, γ-AGN catalogue dominated by blazar Markarian 421
- Can't explain arrival directions better, even including an EGMF

Astropart. Phys. 5 (1996) 279