The large-scale anisotropy and flux (de)magnification of UHECRs in the Galactic magnetic field

UHECR, Malargue, November 2024

Teresa Bister, Glennys Farrar, Michael Unger based on ApJL 975 L21 (2024) and ApJ 966 71 (2024)





# **UHECR** large-scale anisotropies



# The LSS model and fit to the data



# **UHECR flux from the Large Scale Structure**



skymaps for E>8 EeV

### **Predicted dipole directions (JF12)**



# **Predicted dipole directions (JF12)**



- dipole mostly originates from Virgo + Great Attractor
- no significant overdensity in Perseus-Pisces direction after GMF
- change with amplitude from changing propagation horizon, not changing rigidity



# **Predicted dipole directions (JF12)**



- dipole mostly originates from Virgo + Great Attractor
- no significant overdensity in Perseus-Pisces direction after GMF
- change with amplitude from changing propagation horizon, not changing rigidity



dipole direction close to measured with JF12 🗸 What about newer models?

## **Predicted dipole directions**



- all UF23 models predict the dipole direction close to measured one
  - → but, none fits perfectly at all energies
  - → the models are quite similar
- uncertainties on GMF (random & turbulent) do not obstruct conclusions on sources

biggest uncertainty on dipole direction: from cosmic variance

n<sub>s</sub> = 10<sup>-3</sup> Mpc<sup>-3</sup>



### **Predicted dipole amplitude: continuous sources**



### **Predicted dipole amplitude: source density**



### **Predicted dipole & quadrupole amplitudes**



#### for densities ~10<sup>-3</sup> Mpc<sup>-3</sup> to >10<sup>-5</sup> Mpc<sup>-3</sup>

- → compatibility with dipole and quadrupole amplitudes
- $\rightarrow$  note: dipole direction more random for smaller densities

# Why is the dipole amplitude so small with UF23?



- magnification has unexpectedly large influence on dipole amplitude
- caution: due to uncertainties on LSS model + random magnetic field model + EGMF:
  → preferred source density with large uncertainties!

### **Demagnification** - agreement & source candidates

- all UF23 models + random field variations agree on central magnification area
  - many source candidates in central demagnification area
  - might not see many CRs from them, at least not with rigidity R <= 5 EV</li>





# Sensitivity to the LSS model illumination

#### replace the illumination by dipole component:



# Sensitivity to the LSS model illumination



### Conclusions

- large-scale anisotropies can be well explained if UHECR sources follow the large-scale structure
- dipole amplitude is significantly reduced with new UF23 GMF models
  - → due to **demagnification** in Virgo direction
  - → preferred source number density n<sub>s</sub>~10<sup>-4</sup> Mpc<sup>-3</sup>
- **sensitive interplay** of flux predicted by LSS model and demagnification heavily influences dipole
  - future: updated random GMF models, update of LSS model from CosmicFlows...





### backup

### **Bias between matter density and UHECR sources**



*Is there a bias between the UHECR source distribution and the (dark) matter distribution / LSS?* 

 $\rightarrow$  simple test: cut away densest / least dense regions of LSS



# **Bias between matter density and UHECR sources**



# **Extragalactic magnetic field effect?**



### Source density and extragalactic magnetic field



# Source density and extragalactic magnetic field



- rare sources
  (e.g. starbursts) ↔
  strong EGMF
  - → max. 3 nG Mpc<sup>1/2</sup>
- → negligible EGMF
  ↔ sources must be
  common, (e.g. Milky-Way-like galaxies)
  - or: frequent in case of transients like BH-NS mergers, tidal disruption events



# Source density and extragalactic magnetic field



- with UF23 models, smaller source densities are preferred
- due to decreased dipole amplitude (magnification)
- note: large uncertainties due to random GMF model (currently still JF12-Planck) & simplified EGMF treatment

### **Homogeneous source distribution?**





- homogeneous distribution less likely, only for rare sources and considerable EGMF
- dipole direction not predictable

# **Dipole & Quadrupole amplitudes**

•

•

