TÉCNICO \sqrt{r}

UHECR 2024, Malargüe, November 20th 2024

The road to understanding hadronic interactions at the highest energies

Study of cosmic rays at the highest energies

 \diamond Possibility to probe \sqrt{s} energies above terrestrial accelerators

- **✧** After 3 hadronic generations, more than 50% of the energy has already been transferred to the electromagnetic sector
	- **✧** E.m. component mass estimators less dependent of hadronic interaction details

✧ Muons highly sensitive to hadronic interaction details

Muon

 $\mathbf O$

 \circ

 $^{\circ}$

Hadronic Interaction Models

- **✧** Most based on the simple parton model associated with the Gribov-Regge multiple scattering approach
- **✧** Various approaches in the physics treatment
- **✧** Phenomenological models with parameters tuned to available accelerator data

HIM typically used in EAS simulations

See T. Pierog talk for latest results on EPOS LHC-R

ruben@lip.pt

The challenge

p-p @ 14 TeV

Extensive Air Showers

How well do we understand them?

Shower Observables

- Telescopes
-
-

muonic shower components

Shower Universality

Universal Shower Profile (USP)

USP shape parameters

$$
\frac{d^3N}{dX dE dcp_t} = N_{\mu} f(X - X_{\text{max}}^{\mu}, E_i)
$$

✧ Shower Universality

✧ *Shower observables display minimal dependence on primary mass composition or hadronic interaction models*

✧ Electromagnetic component

✧ Muonic component

✧ Universal distribution at production

Pierre Auger Coll., JCAP 1903 (2019) no.03, 018

- **✧** Universality of lateral distribution, energy distribution, angular distribution, and arrival time
- S. Lafebre et al., Astropart. Phys. 31 (2009) 243-254 A. Smialkowski, M. Giller, Astrophys. J. 854 (2018) no.1, 48 M. Giller et al., Astropart. Phys. 60 (2015) 92
-

F. Nerling et al., Astropart. Phys. 24 (2006) 421 M. Guiller et al., J. Phys. G 30 (2004) 97 RC et al, J.Phys.Conf.Ser. 632 (2015) 1, 012087

 $, cp_t)$

L. Cazon, RC et al. Astropart. Phys. 36 (2012) 211 M. Ave et al., Astropart. Phys. 88 (2017) 46

M. Ave et al., Astropart. Phys. 87 (2017) 23 L. Cazon, RC, F. Riehn, JCAP 03 (2023) 022

Ruben Conceição Most of these distributions are universal with the exception of the muon energy spectrum for \mathbf{E}_μ $>1\,\text{GeV}$ *New EPOS LHC-R addresses the muon puzzle predicting an increase of 1 − 10* GeV muons - T. Pierog

Muon Production Depth

L. Cazon et al. Astropart. Phys. 23, 2005

11

Pierre Auger Coll., Phys.Rev.D 90 (2014) 1, 012012

Ruben Conceição ◆ Sensitive to pion-air interaction properties! L. Cazon, RC et al., Astropart.Phys. 35 (2012) 821-827 S. Ostapchenko, M. Bleicher, Phys.Rev.D 93 (2016) 5, 051501

1

*r*2

$$
-c\left(t-\left\right)\Bigg)+\Delta-\left
$$

✧ Relation between **geometry of the shower** (shower front plane) and **muons arrival time** allow us to obtain the position of muons upon their creation - **MPD**

400

200

Muon Production Depth

✧ Relation between **geometry of the shower** (shower front plane) and **muons arrival time** allow us to obtain the position of muons upon their creation - **MPD**

> Ruben Conceição 12 L. Cazon, RC et al., Astropart.Phys. 35 (2012) 821-827 S. Ostapchenko, M. Bleicher, Phys.Rev.D 93 (2016) 5, 051501

✧ *Sensitive to pion-air interaction properties!*

L. Cazon et al. Astropart. Phys. 23, 2005

$$
-c\left(t-\left\right)\Bigg)+\Delta-\left
$$

J. Espadanal, L. Cazon, RC, Astropart.Phys. 86 (2017) 32-40

ruben@lip.pt 13 The shape and relative fluctuations of the muon number distribution gives access to the properties of the **FIRST hadronic interaction** (fraction of energy carried by neutral pions - α_1)

L. Cazon, RC, F. Riehn, PLB 784 (2018) 68-76

Hadronic Interaction Models

How well do we truly understand them?

Pierre Auger Coll., Phys.Rev.D 109 (2024) 10, 102001

Explore hybrid FD-SD events and **fit the measured two-dimensional** $(X_{\text{max}}, S_{1000})$ distributions using templates for simulated air showers produced with hadronic interaction models

Analysis of the (X_{max} , S_{1000}) distribution

None of the post-LHC hadronic interaction models can describe the Auger $(X_{\rm max}, S_{1000})$ data, even $\,$ considering the systematic uncertainties

Systematic uncertainties Systematic uncertainties

Analysis of the (X_{max} , S_{1000}) distribution

More details in J. Vicha's talk

Pierre Auger Coll., Phys.Rev.D 109 (2024) 10, 102001

Models tuning efforts

✧ Workshop on how to tune hadronic interaction models

✧ Integrate all available accelerator and astroparticle experiments data

- **✧** Incoming **proton-Oxygen LHC run** in 2025 will significant boost our knowledge over the shower
- **✧** Efforts to integrate Pythia 8 + Angantyr model with CORSIKA8 to simulate air showers
	- **✧** Create a fixed-target tune (Wuppertal tune) to study EAS

https://indico.uni-wuppertal.de/event/284/overview

Global tuning of event generators with collider and astroparticle data

J. Albrecht^{1,2,3}, J. Becker Tjus^{1,4,5}, N. Behling², J. Blazek⁶, M. Bleicher⁷, J. Boelhauve², L. Cazon⁸, R. Conceição^{9a,9b}, H. Dembinski^{1,2}, L. Dietrich², J. Ebr⁶, J. Ellbracht², R. Engel¹⁰, A. Fedynitch¹¹, M. Fieg¹², M.V. Garzelli¹³, C. Gaudu¹⁴, G. Graziani¹⁵, P. Gutjahr², A. Haungs¹⁰, T. Huege¹⁰, K. Hymon², M. Hünnefeld², K.-H. Kampert^{1,14}, L. Kardum², L. Kolk², N. Korneeva¹⁶, K. Kröninger^{1,2}, A. Maire¹⁷, H. Menjo¹⁸, L. Morejon¹⁴, S. Ostapchenko¹³, P. Paakkinen¹⁹, T. Pierog¹⁰, P. Plotko²⁰, A. Prosekin¹¹, L. Pyras^{20,21,22}, T. Pöschl²³, J. Rautenberg¹⁴, M. Reininghaus¹⁰, W. Rhode^{1,2,3}, F. Riehn²⁴, M. Roth¹⁰, A. Sandrock¹⁴, I. Sarcevic²⁵, M. Schmelling²⁶, G. Sigl¹³, T. Sjöstrand²⁷, D. Soldin²², M. Unger¹⁰, M. Utheim¹⁹, J. Vícha⁶, K. Werner²⁸, M.E. Windau², and V. Zhukov²⁹

Workshop on the tuning of hadronic interaction models $\sqrt{\text{SFB1491}}$

22-25 Jan 2024 **University Wuppertal** Europe/Berlin timezon

Enter your search term

See C. Gaudu's poster

Understand the available phase space

MOCHI

J. Ebr et al., PoS(ICRC2023)245

Explore the phase space to better understand impact of model parameters on shower observables

(**MO**dified **C**haracteristics of **H**adronic **I**nteractions)

More details in J. Ebr's talk

Estimating the Model Uncertainties

✧ Varying model parameters within experimental uncertainties results in: *� X_{max} can vary up to* 10 *g cm* $^{-2}$ *(30 g cm* $^{-2}$ *in exotic scenarios, disfavoured by accelerators)* $\triangleleft N_{\mu}$ can be increased in about $10\,\%$

Estimating the Model Uncertainties

✧ While hadronic interaction models have had a great success describing and even predicting new accelerator

- data it's important to note that the agreement with data is not perfect
- **✧ New unaccounted phenomena might change this picture**

S. Ostapchenko, G. Sigl, Astropart.Phys. 163 (2024) 103004

S. Ostapchenko, G. Sigl, Phys.Rev.D 110 (2024) 6, 063041

A Quantum Leap is On the Horizon!

A few examples that illustrate how significantly the scrutiny of air showers is expected to intensify in the coming years

Multi-hybrid events The capability to analyze the same air showers using multiple instruments

(see, for instance, talks and posters about AugerPrime in this conference)

Multi-hybrid stations

- **✧** Shower particles are crossing multiple detectors
- **✧** Detectors respond differently to particle type and energy
	- **✧ SSD** (scintillator) is mainly counting particles (MIP)
	- **✧ WCD** (water Cherenkov detector) sensitive to particle energy
		- ↑ E.m. component **«** energy
		- \Leftrightarrow Muons \propto β ($E_{\mu} \leq 1$ GeV) and tracklength in WCD
	- **✧ RPC** (Resistive Plate Chambers) shielded by the WCD and the concrete precast
		- **✧** Due to its segmentation, it can identify regions dominated by muons from others

P. Assis, RC, et al Eur.Phys.J.C 78 (2018) 4, 333

Multi-hybrid stations

P. Assis, RC, M. Freitas et al., to be submitted soon

- **✧** Select a station close to the shower $\text{core} (r = 320 \,\text{m})$
- **✧** Increase the high-energy tail of the e.m. energy spectrum of shower secondary particles
- **✧ Sensitive to changes in the energy spectrum of e.m. secondary particles**

The rise of machine learning in EAS physics

Unlocking previously inaccessible information

See, for instance, posters by:

S. Hahn for Pierre Auger Coll., L. Lavitola for SWGO Coll., E. Rodriguez for Pierre Auger Coll., M. Shahvar et al.

Catching neutrinos with a single WCD (I)

 $\sqrt{2}$ ∘ < 40 *θ* $\overline{}$ **Background - cosmic ray events** cosmic **Runolas** Bac

J. Alvarez-Muñiz, RC, B. S. González et al., Phys.Rev.D 110 (2024) 2, 023032

events **Up-going events**Up-going

Down-going events events **Down-going**

Catching neutrinos with a single WCD (II)

- ML algorithms:
	-
	- **✧** Use a CNN to reconstruct the direction of the

J. Alvazez-Muñiz, RC, B. S. González et al., Phys.Rev.D 110 (2024) 2, 023032

Accessing the MPD kinematic delay term

- **✧** Reconstruct muon trajectories by combining the active **RPC pad** and **WCD PMT signal time traces**, leveraging **machine learning** algorithms for enhanced accuracy - $z_{\rm rec}^{\rm angle}$
- **✧** Reconstruction of the muon production height (depth) with **arrival time delay of muon** w.r.t. shower from - z_{rec}^{time}
- **✧** *Integrate muon direction reconstruction with the MPD algorithm to capture the kinematic delay term, providing insights into the muon energy spectrum*

Understanding the first UHE interaction

Gaining insight into hadronic interactions at energies beyond the reach of human-made accelerators

π

- **✧** Hadronic interaction models predict universal value of Λ_μ for shallow showers and highly distinct values for deep showers
- \triangle Binning in $X_{\text{max}} \Rightarrow$ probe the hadronic activity of the first interaction

$$
\begin{array}{r} X_{\text{max}} \text{ (gcm}^{-2}) \\ -700 \text{ } -825 \text{ } -1100 \\ -775 \text{ } -875 \end{array}
$$

Summary

✧ The **description of hadronic interactions** in extensive air showers (EAS) remains **incomplete**

✧ Upcoming accelerator and **astroparticle data** are essential for refining models and **testing** their **consistency**.

✧ Multi-hybrid events and **machine learning** algorithms will significantly boost this endeavour

Acknowledgements

ECT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

REPÚBLICA PORTUGUESA

Backup slides

Experimental feasibility

Test applicability to data under several mass composition scenarios and experimental resolutions

Measuring Λ*^μ*

 $ln(N_\mu)$

Multi-hybrid stations

P. Assis, RC, M. Freitas++, to be submitted soon

The EAS muon puzzle @ Auger

Eur.Phys.J.C 80 (2020) 8, 751 Phys.Rev.Lett. 126 (2021) 15, 152002

Muon puzzle

Allow for a change in the rescaling of the **signal on the ground** produced by the **hadronic** shower component at 1000 m with a factor, R_{had}

Phys.Rev.D 109 (2024) 10, 102001

$R_{\rm had} > 1$ for all tested hadronic interaction models -**EAS muon puzzle**

Poor agreement between data and simulations

In accordance with previous Auger results *Phys.Rev.Lett. 117 (2016) 19, 192001*

Muon puzzle + Shift in X_{max} scale

Phys.Rev.D 109 (2024) 10, 102001

Allow simultaneously for an ad-hoc shift on $\mathsf{the}\ X_\text{max}$ scale and a change in the rescaling of the **signal on the ground** produced by the **hadronic** shower component at 1000 m with a factor, *R*had

*X*max from SD trace using a DNN

Accepted in PRL + PRD (2024)

EAS muon fluctuations

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X_{max} data

Phys.Rev.Lett. 126 (2021) 15, 152002 L. Cazon, RC, F. Riehn, PLB 784 (2018) 68-76

 α_1 is the fraction of energy going into the hadronic sector in the first interaction

$$
\sigma(\alpha_1) \rightarrow 70\% \,\sigma(N_\mu)
$$

Suggestion that muon deficit might be related with description of low energy interactions

Many other EAS measurements…

Phys.Rev.Lett. 109 (2012) 062002 JCAP 1903 (2019) no.03, 018

Measurement of the proton-air crosssection at E~1018 eV **Measurement of average e.m. longitudinal profile shape**

Measurement of time profiles of the signals recorded with the water-Cherenkov detectors

Phys.Rev.D 96 (2017) 12, 122003

The number of muons measured in hybrid events

PoS (ICRC2023) 339

Multi-hybrid shower events

(A plethora of measurements to fully understand the shower)

DNN

Muon Production Depth

✧ Depth of maximum of muon production depth $(X^{\star}\mu_{max})$ in strong tension with FD measurements

↑ X^{*}^{*u*}_{max} measurement is highly dependent on details of hadronic interactions

35th ICRC, PoS (2017) 398

J. Espadanal, L. Cazon, RC, Astropart.Phys. 86 (2017) 32-40