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What do we want to measure,
what can we measure at the colliders?

Otot = Oelastic T Oinelastic
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e very small scattering angle
< not directly related to the shower

development (no energy transfer)

« dedicated forward detectors are

required
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Rapidity (y) and pseudorapidity (1
are your friends from today

d3
apdpydp,
Because of a symmetry around the beam direction : desz
pr is Lorentz invariant but p, is not. Any Lorentz invariant variable related to py??

What we want to measure is : (z is along the beam direction)

(pr momentum transverse to z)

E+pz)
Pz

InE > E',p, - py transform, y' =y + 2ln (ﬁ) (B : relative velocity/c of two frames)
y is NOT Lorentz invariant, but dy IS Lorentz invariant (dy’ = dy).

rapidity is defined as : y ——ln(

2
dszy is a Lorentz invariant cross section including all kinetic information.
d 1 d?c . . . .
Because X == -2 is also a Lorentz invariant cross section.
dp, E' " dprdp,

When E >»m,y = ln E+pz ~ lntangEn : pseudorapidity
y= F—p, >

. correspondmg to the angle
* |nl S 2:central region, 2 < |n| 5 : forward, 5 < |n| : very forward




Detectors surrounding the collision point
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Detectors surrounding the collision point

. Central detector
Beam particle silicon, MWPC, ECAL, HCAL, mu, -+
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« Charged particles with large angles are detected by the central general purpose detectors (main detector of
ATLAS and CMS).



Detectors surrounding the collision point

. Central detector
Beam particle silicon, MWPC, ECAL, HCAL, mu, -+
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» Charges forward particles are detected by the forward calorimeters and counters such as CMS CASTOR,
Minimum Bias Trigger Scintillators and TOTEM T1/T2.



Detectors surrounding the collision point
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» Neutral forward particles are detected by the zero-degree forward calorimeters such as ZDC and LHCH.



Detectors surrounding the collision point

Central detector

Beam particle silicon, MWPC, ECAL, HCAL, mu, -
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« Elastically scattered particles are detected by the Roman pot detectors inserted in the beam pipe such as,,
TOTEM RP and ATLAS ALFA.



Orot) Oelar Oine Measurements by TOTEM

TOTEM Collaboration, EPL, 101 (2013) 21002
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Impact on AS physics
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* One of the best successes of LHC to the air shower physics

 How “post-LHC” models improve the prediction power u



dN/dn

Particle production at LHC

multiplicity and energy flux at LHC 14TeV collisions
pseudo-rapidity; n = -In(tan( 8 /2))

Multiplicity Energy flux
i %‘ i
) - 2.0
8- All particles E -
I w1.
T

Most of the particles are produced into central (ND events)
Most of the energy flows into forward (diffractive-like events)
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« Early LHC results were described by pre-LHC CR models than the HEP models 17
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LHC forward

LHCf Arm1 detector
= RHICf detector

Location
« ATLAS interaction point
+ +/-140m from the IP
« Cover Zero degree of
collisions pseudo rapidity n > 8.4

Detectors

» Sampling and positioning calorimeters

« Two towers, 20mmx20mm, 40mmx40mm (Arm1) , 25mmx25mm,
32mmx32mm(Arm2)

« Tungsten layers, 16 GSO scintillators, 4 position sensitive layers
(Arm1: GSO bar hodoscopes, Arm2: Silicon strip detectors)

e Thickness: 44 rl.and 1.7 A 1




Event categories of LHCf

Responsible for air shower core (elasticity) .
- LHCf calorimeters
’ > Leading baryon

: (neutron) Single hadron
- event

~N

Multi meson production
: I’ O

‘ Responsible for air shower EM particles (inelasticity)

photon Single photon
& — event

/ 0 photon
g% /] Pi-zero event

Y Y
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%p,spectra in 4/s = 7TeV p-p collisions

LHCf Collaboration, PRD 94, 032007 (2016)
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« Experimental result is between EPOS-LHC and QGSIJET 11-04
+ Cross section with Eo~Epeqm = 3.5TeV => y-like proton shower unavoidable 20



Forward neutrons by LHCf (elasticity)

O. Adriani et al., JHEPO7 (2020) 016
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energy spectra
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« Energy of the leading baryon (elasticity) determines the penetrating
power of shower core.
« Inelasiticity (k = 1- Eleading/ECR)
« Energy spectra show a large model variation.
+ Some models (QGS, DPM) are trying to tune to this result
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Forward rr°

\/s dependence
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« Very weak dependence on the collision energy

* Smooth extrapolation to the UHECR energy range is

expected (?)

RHICf Collaboration, arXiv:2203.15416
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Quick summary

* 0;ne Measurements led successful post-LHC models and a less model-
dependent elongation rate predictions.

*» CR models are recognized to have a reliable prediction power at the LHC
energies than the other HEP models.

 First successful very forward measurements by LHC{.

« Good News! : Generally, CR models show good agreements with
measurements.

« Bad News : How can we solve the muon puzzle?

« What can we do next?
« Heavy (strange) flavor hadrons (so far, mostly p, n, m) => different behaviers in AS
 Correlation of multiple particles => process-by-process study

» p-0 collisions => First “Air-CR” collisions at colliders .
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ATLAS-LHCT joint analysis
- forward-central correlation - amasconr-2017-075

Very forward photons classified with the central activity
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diffractive-like and others
e Test models by processes 25



events per collision per bin

More joint analyses by ATLAS/LHCf

One Pion Exchange (OPE)

p

n

S
Y
Lot
Y

(=

neutron energy spectrum
10

LHCf

N3 E
Notargeg > 60
- r<émm
of  BKgeT; M
¥ EENTS EpoSLHC
o
b .
i
fra
.
2 4

5 6
Energy [GeV]

« Test models by processes (more examples)
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LHC proton-Oxygen collisions

Proton Oxygen
Nuclear Modification Factor
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« p-0 collision is scheduled in July 2025
« Nuclear modification factor depends on the model
« Big effort by Hans Dembinski and supports from the community 27



First discussion in 2012

first contact during UHECR2012 at CERN => meeting in August

#ZiHA: Django Manglunki <django@cern.ch>

f#%: Re: LHCf and light ion in LHC

HEF: 201248H31H 0:39:19 IST

%856: Takashi Sako <sako@stelab.nagoya-u.ac.jp>, Simone Gilardoni
<Simone.Gilardoni@cern.ch>, Takashi Sako <Takashi.Sako@cern.ch>,
Detlef Kuchler <Detlef.Kuchler@cern.ch>, John Jowett
<John.Jowett@cern.ch>, Johannes Peter Wessels <j.wessels@uni-
muenster.de>, Michaela Schaumann <michaela.schaumann@cern.ch>, Reine
Versteegen <reine.versteegen@cern.ch>

Cc: Django Manglunki <django.manglunki@cern.ch>

Dear all,
here's a summary of our discussion, corrections/
comments welcome.
Cheers
Django

Preliminary discussion on the feasibility of N-N, p-N and Fe-N
collisions in the LHC

Present:
Sako, Hannes, Detlef, Simone, John, Reine, Michaela, Django.

Introduction by Sako:

The experiment LHCf is motivated to understand the interaction
between cosmic-rays and atmosphere, and hence the origin of the
cosmic-ray particles up to 10720 eV. The p-p and p-Pb collisions at
LHC give important fundamental information for this study. However,
clearly, in the atmosphere the target of the interaction is light
nuclei like Nitrogen and Oxygen. The direct measurements of p-N,
N-N to Fe-N are very interesting to understand the nuclear effect in
the interaction but there are no such experiment carried out using
colliders. LHCf is interested in using the LHC as a light ion
collider in the future.

0f course, these collisions are not prime target of the LHC

science. But is it technically possible? And what is necessary to
realize such experiments in future?

Discussion:

— As there is only one ion source at present, only p-N and N-N can
be considered in the near future.

— Production of nitrogen in the ECR source is not a problem as it is
a gas, neither is Fe as there are techniques to produce it easily
(MIVOC). But afterwards the source needs several weeks to repliably
produce Pb in a stable manner.

— LHCf does not need a lot of running time, only a few days, and
since it is looking at high cross-section events, the luminosity
does not need to be very high.

- ALICE is not interested in other ions than Pb, but an N-N ion run
would not take many days out of the LHC programme. It would,
however, use a lot of resources from the injectors team. In fact the
schedule would be dominated by the setting up and commissioning in
the injectors, not by the collisions. Preparation of a N-N run would

also take a lot of time from the regular fixed target programme.

- One can imagine to start preparing the source with N in early
January, commission the circular accelerators, and have a N-N or p-N
run in autumn, before switching to Pb. But then it would take too
long for the source to stabilise to have a Pb-Pb run before Xmas.
This would only work during a year where there is no Pb-Pb run, or
when it is postponed to after Xmas like this year.

- Oxygen on the other hand is also abundant in the atmsophere and
could be a viable alternative. It is used in the ECR as a sugeort
gas_for Pb production. One can consider tuning the source an
transport systems for oxygen while preparing for a Pb run, still
using Pb in order to keep conditions optimal. A short 0-0 or p-0 run
could be compatible with a "normal" collider schedule, possibly in
2020.

- Nitrogen could be used as support gas too, but would be less
efficient for Pb production so the idea is not retained.

- In the longer term future, if the medical facility is approved, a
switchyard and a second source, able to provide any ion from p to
Ne, will be built. It should then be possible to collide Pb-N, or
even Fe-N, after 2022.

- As a conclusion, there is no technical show-stopper, and LHCf can
go ahead with a letter of intent.
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ALICE muon bundle observation

_— 15, 16
Ejpnm = 4x10 6x10™"eV ALICE Collaboration, CERN-EP-2024-263
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« AS muon measurement by a collider detector
« No AS measurement => no event-by-event energy determination
* Model comparison suggests pure or heavier than Fe => another sign of muon excess? 2



Summary

» 15 years have past since the first LHC collisions.

« CR motivated interaction models are widely compared with
various measurements and recognized to explain the results
better than the HEP models.

» Early LHC results are immediately implemented in the post-
LHC models and the AS analyses became less model
dependent than before.

* No apparent discrepancy means no hint to solve the muon
puzzle raised.

« More analyses (strange hadrons, process specific,-:-) are
on-going.

« First p-O (0-0) run in 2025 will make next major update of
the interaction models.

+ CR-HEP collaborations become more important. Pierre Auger street at CERN
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Location

« ATLAS interaction point

s +/-140m from the IP

» Cover Zero degree of collisions pseudo rapidity n > 8.4

Detectors

» Sampling and positioning calorimeters

« Two towers, 20mmx20mm, 40mmx40mm (Arm1) , 25mmx25mm,
32mmx32mm(Arm2)

« Tungsten layers, 16 GSO scintillators, 4 position sensitive layers
(Arm1: GSO bar hodoscopes, Arm2: Silicon strip detectors)

e Thickness: 44 r.l.and 1.7 A




