

Various constraints on BSM physics from extensive air showers and from UHE gamma-ray and neutrino searches

O. Deligny, CNRS/IN2P3 – IJCLab

November 19, 2024

- 1. Searches for Lorentz Invariance Violation
- 2. UHE gamma rays and neutrinos
- 3. Superheavy dark matter
- 4. Cosmic-strings
- 5. BSM with upgoing showers
- 6. Conclusions

Searches for Lorentz Invariance Violation

Lorentz invariance has always proved resilient to decades of tests remarkably accurate

- LIV: Smoking gun of various BSM frameworks (quantum gravity, string theory, and some alternatives to general relativity)
- Large number of ways to realise LIV ...
- "Standard Model Extension (SME)" framework
 - Lorentz- and CPT-violating terms not violating gauge symmetries
 - Emblematic [Coleman & Glashow PRD 59 (1999) 116008] implementation:
 - All renormalisable, rotationally and translationally invariant terms in a preferred frame
 - CPT-even terms dominant at high energy, defining energy-momentum eigenstates different from low-energy mass eigenstates
 - • "Velocity-mixing" effects turning on gradually with *E*, yielding to different maximum attainable velocities

Effects of changes in dispersion relation

Beyond Coleman & Glashow, dispersion relations modified at high *E* by non-renormalizable effects at the Planck scale *M*_{Pl}:

$$E_i^2 - p_i^2 = m_i^2 + \sum \delta_{i,n} E_i^{2+n}, \quad \delta_{i,n} = \frac{\eta_{i,n}}{M_{\rm Pl}^n}$$

Cf. [Aloisio et al., PRD 62 (2000) 053010]

• Modification of reaction thresholds for non-zero $\delta_{i,n}$

Constraints from N_{μ} data in EAS

- For $\eta < 0, \pi^0$ decay suppressed above a critical energy
- Change in shower development: π^0 interact instead of decaying
- Decrease of e.m. component
- Increase of muon number

•
$$\eta > -5.95 \times 10^{-6} (90\% \text{ C.L.})$$

Cf. [Pierre Auger Collab., ICRC2021 and in preparation]

Generically breaking of CPT

• Ex: gauge-invariant CPT perturbation of QED

$$\mathcal{L} = \mathcal{L}_{\text{QED}} - \frac{1}{4} (k_F)_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$$

with $(k_F)_{\mu\nu\rho\sigma} \propto \kappa$ relating photon phase velocity and maximal fermion velocity through

$$v_{\gamma} = \left(\frac{1-\kappa}{1+\kappa}\right)^{1/2} v_{\rm f,max}$$

- κ < 0:
 - Photon decay for $E \ge 2m_e \left(\frac{1-\kappa}{-2\kappa}\right)^{1/2}$
 - π^0 stability for $E \ge m_{\pi^0} \left(\frac{1-\kappa}{-2\kappa}\right)^{1/2}$
- $\kappa > 0$: vacuum Cherenkov radiation above a critical energy

Constraints from X_{max} data

- Ex: vacuum radiation effects $\kappa > 0$ Cf. [Duenkel, Niechciol & Risse PRD 107 (2023) 083004]
- Vacuum radiation of e⁺/e⁻: faster descent in energy of e.m. sub-showers
- Mean X_{max} vs E significantly changed for large enough κ

- Limits obtained from constraints requiring couples of $(X_{\text{max}}, \sigma(X_{\text{max}}))$ from any combination of primaries to fall within the observed range
- $\kappa < 3 \times 10^{-20}$
- NB: $\kappa < -6 \times 10^{-21}$ Cf. [Duenkel, Niechciol & Risse PRD 104 (2021) 015010]

UHE gamma rays and neutrinos

UHE multi-messengers

- UHE gamma rays [Auger, TA]: Horizon limited to a few Mpc
- Neutrinos [IceCube, KM3NET, Auger, Trinity, GRAND, POEMMA, ...]: Cosmological horizon
- Leptons τ [Auger, ANITA, ...]: BSM tests of neutrino production

Production in decay byproducts

• Decay of a particle with mass $M_X \gg m_W$

- Soft or collinear (real) radiative corrections enhanced by large logarithmic factors at high scale
- Cascades in the QCD sector described by fragmentation functions evolved to high scale [Sarkar & Toldra 2002, Aloisio+ 2004]
- Fragmentation in the EW sector as well [Berezinsky, Kachelriess and Ostapchenko, PRL 89, 171802 (2002)]
- DM example: Expected number of "prompt" $i (\gamma/\nu/p)$ from fragmentation of decay byproducts:

$$n_i^{\text{prompt}}(E) = \frac{1}{4\pi M_X \tau_X} \int_{>E} dE' \frac{dN_i}{dE'} \int d\mathbf{n} \, \omega_i(E', \mathbf{n}) \int_0^\infty ds \, \rho_{\text{DM}}(\mathbf{x}_{\odot} + s\mathbf{n})$$

Secondary production of gamma rays

- Prompt electrons interact/radiate
 - ICS off CMB (dominant at these energies): negligible
 - · Synchrotron emission
- Number of "secondary" photons from synchrotron emission by electron decay byproducts:

$$n_{\gamma}^{\text{sec}}(E) = \frac{1}{4\pi} \int_{>E} \frac{dE'}{E'} \int d\mathbf{n} \, \omega_{\gamma}(E, \mathbf{n}) \int_{0}^{\infty} ds \, j(E', \mathbf{x}_{\odot} + s\mathbf{n})$$

• Emission rate:

$$j(E, \mathbf{x}) = \int_{m_{\rm e}}^{M_{\rm X}/2} dE_{\rm e} \,\mathcal{P}(E, E_{\rm e}, \mathbf{x}) n_{\rm e}(E_{\rm e}, \mathbf{x})$$

- \mathcal{P} : differential synchrotron power in GMF
- $n_{\gamma}^{\text{sec}}(E) > n_{\gamma}^{\text{prompt}}(E)$ for $M_X \ge 10^{12-13}$ GeV [Munbodh and Profumo, arXiv:2405.00798, OD, arXiv:2408.17111]

Superheavy dark matter

Superheavy dark matter?

- Superheavy particles?
 - Inflationary sector: $M_{\phi} \sim [1-3] \times 10^{13} \text{ GeV}$
 - Sterile neutrinos
 - New degrees of freedom $N_{\rm R}$
 - BSM scale at ~ 10¹³ GeV in "vanilla" seesaw

- Instability energy scale of SM: $\Lambda \sim 10^{[10-12]}~\text{GeV}$ [e.g. Degrassi+ 2012]
- Hidden/Dark sector at high scale? (ie. superheavy particles interacting feebly with SM *not* through SM gauge interactions)
 - Additional portal? e.g. axion (pseudo-scalar), Higgs (scalar), sterile neutrino (spin 1/2), vector (spin 1), etc.
 - Gravitational SM/DS interactions

Non-thermal production of SHDM particles

• Minimality: No coupling between SM and DM sectors but gravitational

- ► DM production by "freeze-in" mechanism through s-channel SM+SM→DM+DM or $\phi + \phi \rightarrow$ DM+DM Cf. [Garny et al. PRL 116, 101302], [Mambrini & Olive PRD 103, 115009]:
- SHDM production during inflation and Reheating between $t = H_{inf}^{-1}$ and $t = \Gamma_{\phi}^{-1}$ at T_{rh} : $\frac{dn_X(t)}{dt} + 3H(t)n_X(t) \simeq \sum_i \overline{n}_i^2 \Gamma_i$
- Viable regions in the (H_{inf}, M_X) plane to match the DM relic density for various Reheating efficiency ($\epsilon \simeq 4T_{rh}(M_{Pl}H_{inf})^{-1/2}$ defined between 0 and 1, characterizing the duration of the Reheating period)
- Even $M_X \sim M_{\rm GUT}$ still viable for $H_{\rm inf} \sim 10^{13} {
 m GeV}$

Lifetime constraints

How to get such long τ_X for superheavy M_X ?

- Non-perturbative effects through "instantons" responsible for meta-stability of particles otherwise protected from decay by a quantum number [Kuzmin and Rubakov, Phys. Atom. Nucl. 61, 1028 (1998), Pierre Auger Collab., Phys. Rev. Lett. 130 (2023) 061001]
- Sterile neutrinos themselves DM and feebly coupled [Uehara, JHEP 12, 034, Feldstein et al., Phys. Rev. D 88, 015004 (2013), Dev et al. JCAP 08, 034], Barman et al. JHEP 12, 072]
- Particles coupled with sterile neutrinos alone [Dudas et al. Phys. Rev. D 101, 115029 (2020), Pierre Auger Collab., Phys. Rev. D 109, L081101 (2024)]

High scale supergravity – The case of the EeV gravitino

- Supersymmetry broken at high scale \tilde{m}^2 above the inflationary scale $(M_{\phi} \sim 3 \times 10^{13} \text{ GeV} \text{ from density-perturbation amplitude in CMB})?$
- SUSY particles never being produced by either thermal processes during reheating or by the decay of the inflaton

Cf. [Dudas et al. PRL 119 (2017) 051801]

• Gravitino exception: $M_{3/2} > M_{\phi}^2 / \sqrt{3}M_{\text{Pl}} \sim 10^8 \text{ GeV}$

- Production from thermal bath (gluons): $T_{\rm rh} \sim [10^{10} 10^{12}]$ GeV
- Linear increase of y_{ϕ} with $M_{3/2}$ to counterbalance $1/\tilde{m}^2$ couplings

• Alternative:
$$B_{3/2} \neq 0$$
:
 $y_{\phi} < \left(\frac{B_{3/2}}{10^{-18}}\right)^{-1} \left(\frac{M_{3/2}}{10^8 \text{ GeV}}\right)^{-1}$

*R***-parity violation operators**

- *R*-parity (stability of the proton) \implies LSP stable DM candidate
- Limits on RPV couplings: baryon- and lepton-number violating interactions out-of-equilibrium in the early universe to preserve the baryon asymmetry
- High-scale SUSY: sparticles never in the thermal bath to mediate interactions washing out the baryon asymmetry

• Bilinear RPV operator:

$$W = W_{\rm MSSM} + \mu' L H_u$$

- · Lepton number not conserved
- Baryon number conserved

Cf. [Dudas et al. PRD 98 (2018) 015030], [Allahverdi et al. JHEP 02 (2024) 192]

• $\mu' < 10^{-5} \left(\frac{M_{3/2}}{10^8 \text{ GeV}}\right)^{-2}$ GeV (Weak-scale SUSY: $\mu' < 20$ keV from the preservation of the baryon asymmetry)

Cosmic-strings

UHECRs from cosmic strings

- Cosmic strings produced during GUT scale phase transitions
- Regions of space-time in the symmetry unbroken phase due to boundary conditions that topologically restrict their decay
- Under certain circumstances, energy stored in the unbroken vacuum phase liberated in the form of the GUT scale quanta of the gauge and scalar fields
- Source of UHECRs/UHEνs/UHEγs
 - Transition example: $SU(2)_L \times U(1)_Y \times U(1)_{B-L} \rightarrow SU(2)_L \times U(1)_Y$:
 - 3 RHNs N_{iR} sourcing "vanilla" seesaw
 - Gauge field Z'
 - Scalar field Φ with non-zero vev
 - $\text{CS} \rightarrow N_{iR}/Z'/\Phi \rightarrow \text{UHECRs/UHE}\gamma\text{s}$

UHEvs from moduli fields

- Moduli: scalar fields with gravitational-strength couplings to matter
- · Predicted in supersymmetric particle theories, including string theory
- Decay into gravitinos

- At late times, sharp bursts of high-energy moduli emitted from cusps
- Large Lorentz factors
- Weak-scale quanta boosted to UHE

• UHE_v flux:

$$J_{\nu}(E,z) = \frac{1}{(4\pi)^2} \int \frac{dV(z)}{(1+z)r^2(z)} d\dot{N}_b \, dN_X^b(k) \, \zeta_{\nu}(E,z,k) \propto (G\mu)^3$$

- $d\dot{N}_b$: Rate of bursts
- $dN_{\chi}^{b}(k)$: Number of moduli emitted per burst
- $\zeta_{\nu}(E, z, k)$: Spectrum of ν from modulus with momentum k

Cf. [Berezinsky, Sabancilar & Vilenkin, PRD 84, 085006]

UHE*v* signatures

Cf. [Berezinsky, Sabancilar & Vilenkin, PRD 84, 085006]

• Clear signatures: E^{-2} spectrum above $\simeq 10^{10}$ GeV

• Probing $G\mu$ as low as 10^{-20} (currently $G\mu \leq 10^{-15}$ from GW)

BSM with upgoing showers

Upgoing showers: constraints

- "Anomalous ANITA events"
- Stringent limits from Auger
- Strong constraints on scenarios with input fluxes of BSM particles
- Ex: SHDM $\rightarrow \overline{N}_R N_R$ with seesaw-like mixing regulated by θ_{mix}
 - Need of an input flux of neutrinos...

Another BOAT GRB221009A to probe GeV sterile neutrinos

Cf. [Heighton et al., PRD 108, 055009]

- Minimal extension of SM with one $N_{\rm R}$ d.o.f.: $\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{m_N}{2} \overline{N}_{\rm R}^c N_{\rm R} \frac{g}{\sqrt{2}} \sin \theta_{\rm mix} W_{\mu}^+ \overline{N}_{\rm R}^c \gamma^{\mu} P_{\rm L} \tau \frac{g}{2 \cos \theta_{\rm mix}} \sin \theta_{\rm mix} Z_{\mu} \overline{N}_{\rm R}^c \gamma^{\mu} P_{\rm L} \nu_{\tau} + \text{h.c.}$
- Decay length of sterile neutrinos known from ν MSM: comparable to Earth radius for $M_N \sim \text{GeV}$ and $\theta_{\text{mix}} \in [10^{-1.5}, 10^{-3}]$

Conclusions

New questions on UHECRs

- Which model ?
 - Minimal model ? $p \rightarrow He \rightarrow CNO \rightarrow Si/Fe$
 - Non-minimal model: sub-dominant component of protons at UHE?
- Sources?
 - Resolve anisotropies as a function of mass composition
- Photons/Neutrinos ?
 - Minimal vs non-minimal model
 - BSM

Conclusions/Perspectives

- UHECRs: Ultimate laboratory of high-energy physics
- Future of UHECRs?
- Confirmation of the minimal model
 - High-energy astrophysics : origin, dynamics, energetics of relativistic jets, compact objets ; astrophysics of magnetised plasmas in motion, strong gravity environments
- Non-minimal model
 - Several (two at least) populations of sources
 - BSM?

Une fourmi parlant français parlant latin et javanais ça n'existe pas, ça n'existe pas. eh ! et pourquoi pas !

• Dark matter

• Phase Transitions and cosmic strings

Robert Desnos