What's Nu?: Status of neutrino astrophysics and the UHECR connection

Francesca Capel

Max Planck Institute for Physics 7th International Symposium on Ultra-High-Energy Cosmic Rays Malargüe, 19th November 2024

Probes of energetic particle acceleration

Cosmic Rays

Accelerated charged particles can escape their sources and be detected

Neutrinos

Neutrinos are only produced in hadronic interactions \Rightarrow clear signal

Photohadronic and Hadronuclear reactions

Gamma-rays can have leptonic or hadronic origin, may be absorbed

Neutrinos carry ~5% of the primary cosmic ray energy

2

The cosmic ray—neutrino connection

Cosmic rays

Complementary information from each messenger

Neutrinos

The UHECR—neutrino connection

UHECRs: ~EeV scale

Magnetic deflections \Rightarrow Astronomy only at highest rigidities

Interactions \Rightarrow Local sources

HE v: TeV—PeV scales; UHE v: ~EeV scale

 $E_{v} \sim 0.05 E_{CR}$

HE neutrinos produced by lower energy cosmic rays UHE neutrino connection clearer

Local and distant sources

Possible sites of neutrino production

Source environment HE, UHE v

Challenges in connecting current observations

4

This talk:

High-energy (~TeV—PeV) neutrinos

First sources emerging, many observations

Ultra-high-energy (~EeV) neutrinos

Many planned experiments

The UHECR connection

How we can use this data to pinpoint UHECR sources

The high-energy neutrino sky

1Diffuse flux2Galactic plane

3

Point sources 4 High-energy events

6

Discovery in 2013

First detection of astrophysical neutrinos with a significance of 4σ using starting events in IceCube [Aartsen+ Science (2013)]

7

Characterisation in various channels

Cascades [Aartsen+ PRL (2020)] HESE: High-energy starting events [Abbasi+ PRD (2021)] Through-going muon tracks [Abbasi+ ApJ (2022)] ESTES: Enhanced starting track event selection [Abbasi+ PRD (2024)]

Well-described by a power law

Hints of substructure from tracks and cascades

NS Tracks 9.5 year HESE 7.5 year Cascade 6 year Inelasticity 5 year 2.8 3.0 3.2

Combined analyses

Make the most of different event selections!

[Aartsen+ ApJ (2015); Naab+ ICRC (2023); Rechav+ TeVPA (2024)]

Stronger constraints and indication of spectral break

Status

Clear astrophysical signal

Flavour composition consistent with equal ratio

Possible spectral break (20 significance)

Source constraints

Should not overproduce gamma-rays [Bechtol+ ApJ (2017); Murase+ PRL (2016)]

Combined density and luminosity of proposed source classes must not overshoot [E.g. Murase+Waxman PRD (2016); Capel+ PRD (2020)]

Expect high-energy "bump" imprint of pγ processes [Fiorillo+Bustamente PRD (2022)]

Galactic plane

Connection to lowerenergy Galactic cosmic rays

Search based on gamma-ray predictions finds 4.5 σ significance

Extra-Galactic sources are more powerful

We can still learn about higher-energy particle acceleration from nearby lower-energy systems

[E.g. Fang+ Nat. Astron (2024); Fang+Murase ApJL (2024); Desai+ ApJ (2024); Ambrosone+ PRD (2024); Allakhverdyan+ (arXiv:2411.05608)]

Science (2023)] Abbasi+

How to search for sources in the diffuse sky?

- 1. Excess/clustering of neutrino directions
- 2. Excess of neutrinos at higher energies

[Braun+Astropart. Phys. (2008); Wolf+ICRC (2019); Bellenghi+ICRC (2023); SkyLLH code]

Test points across the sky

Unbiased way to look for "hotspots" Many points tested \Rightarrow large trial correction factor Not very sensitive

Some examples (incomplete)

Active Galactic Nuclei & Blazars [IceCube+ (2018a, 2018b); Plavin+ (2020); Giommi+Padovani (2021); Buson+ (2022/23); Bellenghi+ (2023); Rodrigues+ (2024)]

Use information on known sources

Test a fixed list \Rightarrow small trial correction factor "Stacking" of similar sources to increase signal Multi-messenger selection or weighting

NGC 1068 & Seyfert galaxies [Abbasi+ (2022); Neronov+ (2023), Abbasi+ (2024a,b)]

Including more data: Moves the hotspot closer to NGC 1068 Softens the spectral index to γ ~ 3.4 Lowers the significance slightly to 4σ

[Aartsen+ PRL (2020); Abbasi+ Science (2022); Glauch+ ICRC (2023)]

[Kontrimas+ TeVPA (2024)]

NGC 1068 & Seyfert galaxies

Search for X-ray bright Seyfert galaxies (Northern sky) [Abbasi+ (arXiv:2406.07601)] 2.7σ from binomial analysis due to 2 sources: NGC 4151 and CGCG 420-015

ESTES Southern sky Seyfert search [Yu+ TeVPA (2024)] 3.0 σ from stacking of 13 Southern Seyfert galaxies

Search for hard X-ray AGN [Abbasi+ (arXiv:2406.06684)] 2.9σ from NGC 4151

Update to 13 years of data [Kontrimas+ (2024)] 3.3σ from binomial analysis due to 11 X-ray bright Seyferts

N Sources

TeVPA (2024)

Kontrimas+

NGC 1068 & Seyfert galaxies

Hidden sources: not seen in gamma-rays

So far analyses have focused on background rejection

To move beyond discovery to characterisation, physical modelling is important

[Inoue+ (2019,2020); Murase+ (2020); Kheirandish+ (2021); Eichmann+ (2022); Padovani+ (2024)]

[Saurenhaus+ RICAP (2024); See also Carpio+ TeVPA (2024)]

High-energy events

Follow-up of individual energetic events that have a higher probability of being astrophysical

Blazar TXS 0506+056

E =~290 TeV, P_{astro} ~ 56%

Coincident with ~6 month flare

3σ significance

Gamma-ray—neutrino connection unclear

[IceCube Science (2018)]

TDE AT2019dsg

E ~ 200 TeV, P_{astro} ~ 59%

Within ~6 months of TDF onset Two other candidates found \Rightarrow 3.7 σ significance Electromagnetic connection unclear

[Reusch+ PRL (2022); Van Velzen+ MNRAS (2024)]

Stein+ Nat. Astron. (2021)] 14 12 10 Counts - 8

High-energy events

IceCat-I

Chance coincidence rate is only getting larger as we survey the sky Transient sources and/or physical connections needed for meaningful associations

[Abbasi+ ApJS (2023)]

17

High-energy events

E.g. Blazar flares

Chance coincidence rate is only getting larger as we survey the sky Transient sources and/or physical connections needed for meaningful associations

Low No UBs No GP Reference Alt. UBs High

8 10

(Ultra?)-high-energy events

KM3Net ARCA Observation

[Coelho+ Neutrino (2024)]

 $E_v \gtrsim 10s \text{ PeV} \Rightarrow E_p \gtrsim 100s \text{ PeV}$ High angular resolution

(Ultra?)-high-energy events

High-energy neutrinos & UHECRs

Similar energy density \Rightarrow unified origins?

[Ackermann+ JHEA (2024)]

High-energy neutrinos & UHECRs

Connected models are possible

rebook of							
mical object classes							
Acceleration	Escape	Survival					
OK with nuclei	No	No					
OK with nuclei	OK	OK					
OK	Maybe	Unlikely					
OK with nuclei	No	Unlikely					
ОК	Νο	ОК					
	a one-zone model						
Acceleration	Escape	Survival					
OK with nuclei	Unlikely	Maybe					
OK with nuclei	No	Unlikely					
OK with nuclei OK with nuclei	No OK	Unlikely OK					

[Yoshida ICRC (2023)] [See also Plotko+ (arXiv:2410.19047, TDEs; talks by Antonio Ambrosone (SBGs) and Foteini Oikonomou (UFOs)]

High-energy neutrinos & UHECRs

Difficult to observe direct correlations

UHECR and HE neutrino sample

Neutrino flux too clustered, negative source evolution required [Palladino+ MNRAS (2019)]

[Albert+ (2022)]

Ultra-high-energy neutrinos

Current status

Clear connection to UHECRs

Light compositions constrained Proton fraction ≤ 20%

Strong evolutions constrained E.g. FSRQs (FRII) Even for subdominant protons

[Alosio+ Astropart. Phys (2011); Aartsen+ PRL (2016); Ackermann+ JHEA (2022); Ehlert+ JCAP (2024)]

[Niechciol+ ICRC (2023); Talk by B. T. Zhang] [Also talks later by Alvarez-Muniz & Takahashi]

Ultra-high-energy neutrinos

Current status

Clear connection to UHECRs

Light compositions constrained Proton fraction ≤ 20%

Strong evolutions constrained E.g. FSRQs (FRII) Even for subdominant protons

[Alosio+ Astropart. Phys (2011); Aartsen+ PRL (2016); Ackermann+ JHEA (2022); Ehlert+ JCAP (2024)]

Ultra-high-energy neutrinos

Challenges

Clear connection to UHECRs

Degeneracies in constraints

UHE neutrinos can also be produced in **UHECR** sources

Flux may be low in pessimistic case Target sensitivity: 10⁻¹⁰ GeV cm⁻² sr⁻¹ s⁻¹

[Alosio+ Astropart. Phys (2011); Aartsen+ PRL (2016); van Vliet+ PRD (2019); Ackermann+ JHEA (2022); Ehlert+ JCAP (2024)]

[See also talks by Alessandro Cermenati & Jon Paul Lundquist]

The bigger picture: a complex astrophysical landscape

2

TeV—EeV Neutrinos

Complementary constraints Larger horizons Probing dense environments

UHECRs

TeV—PeV connection possible (unclear) Clearer for future UHE detection

Multi-messenger connection

How can we make the most of this data and prepare for the future?

Challenges

Complex physical models

UHECR acceleration

TeV—EeV neutrino production

UHECR propagation

Diverse relevant datasets

TeV—EeV neutrinos

Multi-wavelength data Astronomical catalogues

Challenges

Computational aspects

- Number of free model parameters
- Complexity in theoretical and data models
- Determination of uncertainties in best-fit parameters

Hypothesis testing & p-values

- Interpretation always in relation to null hypothesis (indirect question)
- Analysis choices and sensitivity driven by trial-factor corrections
- Impossible to calculate trial factors across separate analyses ٠
- Data should not be re-used to investigate interesting results

[Gigerenzer et al. (2004); Wasserstein & Lazar (2016); Kowalski (2021)]

Ways forward

High-dimensional analyses More free parameters ⇒ include more physics Markov chain Monte Carlo, simulation-based inference etc...

[Capel+Mortlock MNRAS (2019); Capel+ ApJ (2024)]

Interpretable analyses

Not just background rejection, try to describe the data *Generative modelling, Goodness-of-fit, Bayesian approaches*

[Talk by Etienne Parizot, Talk by Teresa Bister]

Open analyses

Loss of information in comparing analysis results with predictions Open source simulations and analysis frameworks

[Coleman+ Asrtopart. Phys. (2023)]

Ways forward

UHECR sources

[Talk by Keito Watanabe]

[Poster by Nadine Bourriche]

HE neutrino sources

[Capel+ ApJ (2024); Kuhlmann+ RICAP (2024)]

0.1 number of neutrino events per pixel

[Saurenhaus+ (RICAP) 2024]

The future is (neutrino-) bright...

Future UHECR detectors are also neutrino detectors

Experiment	Feature	Cosmic Ray Science [*]	Timelin	
Pierre Auger Observatory	Hybrid array: fluorescence, surface e/μ + radio, 3000 km ²	Hadronic interactions, search for BSM, UHECR source populations, σ_{p-Air}	AugerPrime upgrade	•
Telescope Array (TA)	Hybrid array: fluorescence, surface scintillators, up to 3000 $\rm km^2$	UHECR source populations proton-air cross section (σ_{p-Air})	TAx4 upgrade	•
IceCube / IceCube-Gen2	Hybrid array: surface + deep, up to 6 km^2	Hadronic interactions, prompt decays, Galactic to extragalactic transition	Upgrade + surface enhancement IceCube deploy	e-G rme
GRAND	Radio array for inclined events, up to 200,000 $\rm km^2$	UHECR sources via huge exposure, search for ZeV particles, σ_{p-Air}	GRANDProto GRAND 300 10k r	nul
POEMMA	Space fluorescence and Cherenkov detector	UHECR sources via huge exposure, search for ZeV particles, σ_{p-Air}	JEM-EUSO program	
GCOS	Hybrid array with $X_{\text{max}} + e/\mu$ over 40,000 km ²	UHECR sources via event-by-event rigidity, forward particle physics, search for BSM, σ_{p-Air}	GCOS R&D + first site	
*All experiments contribute several experiments (IceCul	e to multi-messenger astrophysics also be, GRAND, POEMMA) have astrop	by searches for UHE neutrinos and photons; hysical neutrinos as primary science case.	; 2025 2030	

[Coleman+ Astopart. Phys. (2024)]

...lighting the path to UHECR sources!

e				
Gen2 IceCube-Gen2				
ent operation				
GRAND 200k				
ltiple sites, step by step				
POEMMA				
GCOS				
further sites				
2035 2040)			