Progress in the development of the observation system for the CRAFFT project **Cosmic Ray Air Fluorescence Fresnel lens Telescope** Simple FD for UHECR future project

<u>Y. Tameda^a,</u>

- T. Tomida^b, D. Ikeda^c, K. Yamazaki^d, J.H. Kim^e, K. Fujita^f, N. Okazaki^f,
- M. Mori^a, H. Iwagami^a, M. Murakami^a, E. Nishio^a, N. Shimamoto^a,
- A. Nagata^a, M. Nonoyama^a, M. Fujii^a, T. Katayama^a, Y. Kobayashi^a,
- R. Sakamoto^a, S. Inoue^a, Y. Kuzutani^a, H. Sasaki^a, T. Hanaoka^a,
- K. Komatsu^b, M. Kuroiwa^b, H. Hattori^b For the CRAFFT collaboration
- (a) Osaka Electro-Communication University
- (b) Shinshu University
- (c) Kanagawa University,
- (d) Chubu university
- (e) University of Utah
- (f) University of Tokyo, ICRR

Motivation of CRAFFT

Indication of UHECR Anisotropy

- TA : Hotspot (> 57 EeV)
- Auger : Dipole structure (> 8 EeV) Where does the "Amaterasu" particle come from? How do we identify UHECR sources?
 - 1. Expanding Detection Area
 - Enhance statistics with larger coverage
 - 2. Rigidity Measurements
 - Propagation of UHECRs in magnetic field
 - Mass composition
 - 3. All-Sky Surveys
 - Comprehensive analysis of arrival directions

Future p The new detectors of AugerPrime

Concept of CRAFFT project

- Extension of detection area for much more statistics
 - Development of cost effective detectors
 - Operation with less man power
 - automation system and maintenance free
 - Low environment impact
 - Less detector density (wide spacing)
- Rigidity or mass composition measurements
 - Xmax measurements (ex. FD)
- All sky survey
 - Observation at multi location for covering huge detection area totally
 - Easy to construct or transport
- Fluorescence detector (FD) is one of the successful detector for UHECR observation of the successful detector for UHECR ob
- CRAFFT project has developed a simple FD to realize huge array of 360° view FD station

Roadmap of CRAFFT project

Roadmap of CRAFFT project

Y.Tameda "Progress of CRAFFT" UHECR (2024) Mendoza, Argentina

400,000 km² FD Array

Detector optimization

 To Improve reconstruction accuracy, field of view (F.O.V.) per detector, and S/N ratio.

Phase 1.5

- Explore cost-effective multipixelization of PMT clusters.
- Reconstruction with waveform fitting method
 - Simulate and match observed waveforms to identify shower geometry and profile.
 - Parameters fitted: core (X, Y), zenith, azimuth, energy, and Xmax.
 - Geometrical reconstruction accuracy matches TA FD mono level using 4-parameter fitting.
- Deploy four optimized telescopes to cover the equivalent of one TA FD station.

Detector optimization

 To Improve reconstruction accuracy, field of view (F.O.V.) per detector, and S/N ratio.

Phase 1.5

- Explore cost-effective multipixelization of PMT clusters.
- Reconstruction with waveform fitting method
 - Simulate and match observed waveforms to identify shower geometry and profile.
 - Parameters fitted: core (X, Y), zenith, azimuth, energy, and Xmax.
- Geometrical reconstruction accuracy matches TA FD mono level using 4-parameter fitting. • Deploy four optimized telescopes to cover the
- equivalent of one TA FD station.

Test observation with new configuration CRAFFT

- Test observations at TA FD site (2023/08/25–08/28).
 - Deployed one optimized telescope with 12 PMTs (R877, 5 in. diameter) covering the F.O.V. of four prototype telescopes
 - Trigger timing from TA FD.

Phase 1.5

- Observed at least 10 air shower events,
- - 7σ with any two condition

Y.Tameda "Progress of CRAFFT" UHECR (2024) Mendoza, Argentina

ex. Energy: 10^{18.5}eV, Rp: 1.1 km, Zenith: 29.0°, Azimuth: 2.3° (reconstructed by TAFD) Surveyed optimal threshold with simple trigger algorithm not to miss above events

- Essential for reducing operational costs and minimizing manpower needs. Shutter and DAQ control is fully automated.
- Environmental monitoring determines observation readiness.
- Component
 - Solar power system
 - Environmental monitor
 - Telescope protection
 - DAQ system (FADC board, HV, amplifiers).
 - Fisheye camera for cloud monitoring.

Environmental Monitoring System

- Installed on CRAFFT telescopes at TAFD site (Nov. 2024)
- Weather Monitoring:

Phase 1.5

- Tracks temperature, pressure, humidity, wind speed, and brightness.
- Detector Condition Monitoring:
 - Shutter status (limit switch).
 - PMT voltage monitoring (in development).
- Power Supply by solar system:
 - Fully solar-powered for sustainable 24/7 operation
- Observation conditions automatically evaluated based on real-time data.

至大阪

- Automated Shutter Control:
 - Opens at observation start and closes at the end.
- Remains closed under unfavorable environmental conditions detected by monitors.
- Ensures smooth, hands-free operation to maximize observation time and protect equipment.

Y.Tameda "Progress of CRAFFT" UHECR (2024) Mendoza, Argentina

2024/11/11 8:51

2024/11/10

07:45:41

Temperature Pressure

18.93 °C 859.908 hPa

CRAFFT mnitor (2024/11/10 23:40:00)

Recorded date Recorded Time Timezone

Observation start Observation end Status

23:36:22

12:38:1

NG

Wind speed Brightness Rain Shutter

0.04 m/s BRIGHT OK CLOSE

tame.n.kanagawa-u.ac.jp/~tame/CRAFFT/

Status of solar pow		
Sol	Solar	
Voltate	Cι	
14.34V		
Lo	Load	
Voltate	Cι	
13.03V		
Battery	Battery	
https://tameurotanagawa-u.ac.j	Ct	
13.03V	-(
State of charge		
71%		

Sky Monitoring System Phase 1.5

- Sky monitor consisting of CMOS sensor and fisheye lens
- Cross checking the shutter status
 - Red light reflected by reflectors
 - Gain and exposure time are being adjusted
- Sky monitor takes pictures every 10 min.
- Sky monitor also see the sky above the site.
 - We can see stars and clouds.
 - We are developing the algorithm to judge the cloudiness or transparency of atmosphere.
 - It will help to judge obs. condition.

Test observation on 2024

Test observations at TA FD site (2024/09/26, 27).

Phase 1.5

- Implemented trigger algorithm on a programmable FADC board (Cosmo-Z: A flexible ADC board with FPGA for customization.).
 - Falling edge method with a 7σ threshold against background noise to find signal.
 - Triggered with any two condition
- We succeeded to acquire waveforms by self triggering.
 - Data analysis is on going to check the simple trigger algorithm working.

14

Cosmo-Z FADC board w/ FPGA

Future plan Phase 1.5

Electronics Upgrades:

- Update DAQ system with advanced trigger algorithms
 - Adjacent conditions, GPS timestamp, …
- Improve hardware
 - high-voltage supply circuits and signal amplifiers.

Observation Plan:

- Continue testing environmental monitoring and shutter control until next summer.
- Relocate CRAFFT telescopes to LR station for op deployment.
- Initiate observations with a fully automated DAQ system.

CRAFFT Overview:

- Cosmic Ray Air Fluorescence Fresnel Lens Telescope (CRAFFT). Simplified FD design for next-generation UHECR observatories like GCOS.

Achievements:

- Optimized detector configuration to improve reconstruction accuracy, extend the field of view, and improve S/N ratio.
- Environmental monitoring system deployed and under evaluation.
- Automated shutter control successfully implemented.
- DAQ with self triggering with simple trigger algorithm.

Future Vision:

- Deploy optimized telescopes with full automation at TA Spara Electro-Communication Establish a large-scale, next-generation observatory for UHECR research.

↓至大版