

PIERRE **AUGER OBSERVATORY**

T. Schulz **N(I)**, on behalf of the Pierre Auger Collaboration | 21.11.2024

7th International Symposium on Ultra High Energy Cosmic Rays

The Pierre Auger Observatory

- 1660 Water-Cherenkov detectors (WCDs)
- Surface-Scintillator detectors (SSDs) mounted on top
	- SSD active area of 3.84 m^2

Subluminal pulses

- Pulses with **time delays** $> r/c$ defined as subluminal
- **Subluminal pulses** in scintillator measurements of Volcano Ranch experiment suspected to originate from **neutrons**

Event: 57136996. Station: 612

 $\frac{1}{2.5}$

 $(t - t_{start})/\mu s$

 $\overline{50}$

 $\frac{1}{7.5}$

Sub-luminal pulses from cosmic-ray air showers

John Linslev Department of Physics and Astro Mexico 87131, USA

Received 30 May 1984

Abstract. Some signals produced by air showers of energy greater than 10^{19} eV in scintillators at impact parameters greater than 1 km possess a distinctive feature, a 'subluminal pulse' (SLP) following the normal one with a time delay of approximately $1.5r/c$. The average amplitude of the SLP corresponds to an energy deposit of about 50 MeV, three times as much as is deposited by a vertical minimum ionising muon. The SLP account for approximately 5% of the energy deposited in the atmosphere by such air showers at these distances.

- Delayed pulses seen in SSD measurements of **AugerPrime**, which are not present in the same WCD measurements
	- → Are these **"real" particles** or electronic effects?

 -50

SSD

 -2.5

 0.0

WCD

 $\sigma(E/\text{eV}) = 19.05$

 θ ^o = 37.93

 $r/m = 762$

 $\sum_{\mathcal{S}}^{15}$

 $\sum_{S=20}^{30}$

 $\frac{1}{2.5}$

 $\frac{1}{10.0}$

PMT: 1 $S/VEM = 139.2$

PMT: 5 $S/MIP = 171.2$

Neutrons in air showers

- $\bullet\,$ Span full spectrum due to long lifetime and **no ionization energy loss**
- High energy neutrons created in **same hadronic processes** as pions and kaons
	- Pair-production due to **baryon number conservation**
- **Quasi-elastic peak** from
	- non-elastic neutron-nucleon interactions
	- elastic neutron-nucleon interactions

Finding (subluminal) pulses

Simulation

 t /us

- **Pulse finding algorithm** to detect all pulses above certain threshold
	- Conservative threshold to avoid impact of **baseline noise / artifacts**
- About **600,000** 14 **traces** from 1.2 2020-2024 1.0 S/MIP_{peak} Pulse shape compatible with **single particle** time structure $0₄$ 10^{0} 0.2 **Effects of electronics** ruled out in **lab** 0.10 0.00 0.05 **measurements**

Candidate selection

- Background from the EM/μ component of the shower is dependent on *E*, θ , \dot{r} and S_{pulse}
- Around $1 20\%$ of pulses from electromagnetic and muonic components (simulations)
- Pulses found **before** shower signal (*t < t*start), are background, **unrelated to the shower**

- More than **6 pulses per trace** possible at highest energies
- **Saturation** of baseline limits current analysis

● **Zenith angle and energy** dependence of pulse rate

Pulse rates II

- **Normalization** of pulse rate to $\frac{1}{100}$ saturation
	- detector size
	- observable time window
	- shower energy
- Near **linear scaling** with energy

• Increasing number of neutrons with energy & **reduced attenuation** lead to almost linear energy scaling ω 850 g/cm² [arXiv:2406.11702](https://arxiv.org/abs/2406.11702)

Azimuthal distribution

● **Azimuthal asymmetry** expected, depending on shower zenith angle and distance to shower axis

• Relative amplitude of the asymmetry **larger for more inclined** showers

Pulse spectrum I

Pulse spectrum II

● Use several **input spectra** (Power law, Broken Power Law, etc.)

•
$$
G = 2 \sum y_i - n_i + n_i \ln(n_i/y_i) \quad (G-Test)
$$

AugerPrime measurements

T. Schulz: Subluminal pulses in the Surface-Scintillator detectors of AugerPrime

● Use several **input spectra** (Power law, Broken Power Law, etc.)

AugerPrime measurements

measurement

● Use several **input spectra** (Power law, Broken Power Law, etc.)

 E_{neutron}/MeV

 10^{-1} • Sensitive on the **shape** of energy spectrum Simulation sec $\theta_{\text{particle}} = 1.4$ average angle of isotropic $10⁹$ $(dE/dx)_{max}/\frac{MeV}{mm} = 8$ $\sum_{\substack{\mathrm{p} \text{ odd} \\ \mathrm{p} \geq 10^{-4}}}^{\mathrm{t}} 10^{-3}$ distribution projected on a plane $G = 4088 \pm 117$ 10^{7} $\frac{1}{2}$ $\frac{10^5}{2}$ $t_{\text{pulse}}^{\text{start}}/\mu s \geq 5$ 10^{-5} $400 \le r/m < 800$ 10^{3} $18.0 \leq \lg(E/\text{eV}) < 19.0$ $1.0 \le \sec \theta_{\text{shower}} < 2.0$ 10^{-6} $\nu = 1$ 10^{1} 10^{0} 10^{1} $10²$ 10^{3} 10^{1} $10²$

AugerPrime measurements

 $S_{\text{pulse}}/MIP_{\text{charge}}$

measurement

 10^3

 $\mathbb{E}_{\text{neutron}}$

 10^{1}

14 14.11.2024 T. Schulz: Subluminal pulses in the Surface-Scintillator detectors of AugerPrime

● Use several **input spectra** (Power law, Broken Power Law, etc.)

AugerPrime measurements

measurement

Summary

- **Measurement** of subluminal pulses with $\sum_{\infty}^{15\left|\frac{1}{r/m} 762\right|}$ the SSDs of AugerPrime
- Observed pulse rate **exceeding** expectations from background
- Pulse spectrum **hardening** with distance

● Sensitivity to shape of **neutron energy spectrum**

- Time t_{100} when 100% of the signal in a trace is reached in **simulations**
- EM / MU signal of **most showers** contained within $4 - 5 \,\mu s$
- Probability p_{100}^5 of how often t_{100} is **larger than 5 μs**
- Background contribution which is dependent on E , θ , r , etc.

- Time t_{100} when 100% of the signal in a trace is reached in **simulations**
- EM / MU signal of **most showers** contained within $4 - 5$ µs

• Probability p_{100}^5 of how often t_{100} is **larger than 5 μs**

2000

• Background contribution which is dependent on E , θ , r , etc.

Backup: Electronics Board

- Undershoot from board visible, however no peak / pulse structures present
- SPE around 0.05 MIP_{charge}

Backup: Azimuthal distribution

Backup: Pulse spectra I

Backup: Pulse spectra II

Backup: Pulse spectra III

Backup: Impact of angular distribution & quenching

• Strong dependence on zenith angle • Minor dependence on quenching