

Highlights from the Auger Engineering Radio Array

Bjarni Pont — <u>b.pont@science.ru.nl</u> — UHECR2024 — November 2024

Radboud University

Bjarni Pont For the Pierre Auger Collaboration

Postdoc Radboud University (NL)

Introduction: AERA at the Pierre Auger Observatory

Auger Engineering Radio Array

- 153 autonomous radio antennas
 - Dense Phase-I grid of **LPDA**-type antennas
 - Large Phase-II grid of **Butterfly**-type antennas
- Energy range: 10¹⁷-10¹⁹ eV
- Frequency range: 30-80 MHz
- A decade of data for long-term calibration
- >2000 high quality events over 7 years for mass composition
- -> Interferometry

AERA stations

On CR energy

Radio as a stable calibration source for (multi-)hybrid detectors

AERA & RD

Radboud Univer

Overview — "on energy and mass"

On mass composition

X_{max} from the radio footprint

Vertical showers ₩**†** (AERA)

X_{max} from

radio interferome

Inclined air showe ₩**‡(AERA & RD)**

Mass composition with WCD(muon) + Radio(em)

—> See Marvin Gottowik's poster! (AERA) ▷ -> See Jörg Hörandel's poster! (RD)

sity	Len de la company
try	
ers	

Part 1:

Long-term calibration and the stability of the radio signal

Motivation

- **Absolute calibration** provides a stable lacksquarescale for cosmic ray energy.
- CR detectors usually suffer from ageing (dust accumulation, PMT ageing, ...). -> Radio does not age (as will be shown) -> Radio can reduce systematic uncertainty on CR energy scale.

- **Expected power** from model (one is shown here)
- **Measured power** (after RFI cleaning)
- Fit expected vs measured power at each frequency:
 - = calibration constant C_0

Method: measurements vs expected power

$$P_{model}(t,\nu) = P_{sky}(t,\nu)G_{ant}(\nu)G_{RCU}(\nu)C_0^2(\nu) + N_{tot}$$

Independent linear fit for each frequency band

- Averaged over frequency, $|C_0 \equiv \frac{1}{N} \sum C_0(\nu)|$ *153
- The lowest, central, and highest sky models are shown
- Range between distribution: systematic uncertainty.
- Width of each distribution: statistical spread \bullet

Station (channel)	$\widehat{\mathbb{C}}_0 \pm \pmb{\sigma}_{ ext{stat}} \pm \pmb{\sigma}_{ ext{syst}}$
Butterfly (East-West)	$1.08 \pm 0.05 \pm 0.05$
Butterfly (North-South)	$1.04 \pm 0.04 \pm 0.06$
LPDA (East-West)	$1.01 \pm 0.07 \pm 0.06$
LPDA (North-South)	$1.01 \pm 0.04 \pm 0.06$

Compatible with 1

"Lab-measured signal chain is well-understood"

Radboud University

Galactic calibration agrees with lab calibration

Calibration shows no ageing

Evolution over time? — no: single station example

All data together: per station type and antenna arm:

Station (channel)	Aging per decade (%)
Butterfly (East-West)	0.28 ± 0.82
Butterfly (North-South)	-0.14 ± 0.76
LPDA (East-West)	-1.7 ± 1.7
LPDA (North-South)	-2.1 ± 1.6

Combined: -0.32 ± 0.51 % per decade (on both measured radio signal and on cosmic ray energy)

"Compatible with no ageing" "Radio can function as a calibrator for other detectors (FD, WCD, ...)

Seasonal modulation is an understood method artefact, due to varying noise background

X_{max} from the radio footprint

Radboud University

Part 2:

<u>Phys. Rev. Lett. 132, 021001 (2024)</u>: Demonstrating compatibility Fluorescence and Radio X_{max}

<u>Phys. Rev. D 109, 022002 (2024)</u>: Method and detailed results of AERA X_{max}

Reconstructing X_{max} from the radio footprint

Event-level resolution obtained from reconstruction

Resolution improves with energy.

- Up to 'better than 15 g/cm²'
- Trend driven by low SNR at low energy.

Resolution competitive with e.g.:

- <u>Auger fluorescence</u> [arXiv:1409.4809]
- LOFAR radio (E=10^{16.8...18.3}eV) [arXiv:2103.12549v2]

X_{max} resolution

Event-by-event FD vs AERA Xmax

Auger has unique Radio-Fluorescence setup:

- No significant bias radio X_{max} w.r.t. fluorescence X_{max}.
- Provides independent checks on:
 - X_{max} reconstruction methods
 - shower physics (AERA and FD probe different aspects)

• X_{max} of **53** hybrid-showers with AERA and FD (Are independent observations!)

- ~600 showers after quality and anti-bias cuts.
- In agreement with Auger FD in mean and width.
- Light composition (p-He?) in $E=10^{17.5}$ eV to $E=10^{18.5}$ eV range.

- resolution, acceptance, and reconstruction bias} -> All energy bins compatible with AugerMix
- Validation that:
 - (1) that we understand our procedure.
 - and (2) of compatibility FD and AERA.

10

X_{max} from the 3d emission region (with interferometry):

Bjarni Pont — <u>b.pont@science.ru.nl</u> — UHECR2024 — November 2024

Radboud University

Part 3:

12

- Similar to footprint method: compare to simulation set per event.
- Generally good agreement. 3 examples shown. Works well at both low and high X_{max}.
- Station multiplicity & geometry governs the resolution (spread of points). -> still needs proper error estimation on fit (for now simple fit uncertainty).
- Proof of concept for the radio upgrade at the Pierre Auger Observatory (1700 detectors, 3000km2). More to come!!

1:1 comparison to footprint method

Long-term calibration and the stability of the radio signal

- Publication in prep.

- Demonstrated **FD-AERA compatibility**
- X_{max} resolution shows competitiveness

Phys. Rev. Lett. 132, 021001 (2024): Demonstrating compatibility Fluorescence and Radio X_{max} Method and detailed results of AERA X_{max} Phys. Rev. D 109, 022002 (2024):

X_{max} from the 3d emission region (with interferometry):

- Cross-check of LDF and interferometry method

Conclusions

Absolute calibration shows system is well-understood

No evolution over a decade -> Radio is a stable reference for hybrid detectors

Prospects for a 2nd mass composition method with inclined showers (3000km² Auger RD)

Backup

Build upon simulation-template fitting method [Buitink+2016]

- From 7yr of data:
 - ~600 high-quality showers after anti-bias and reconstruction cuts (E=10^{17.5} to 10^{18.8} eV)
 - 53 hybrid showers with independent FD and AERA reconstructions
- 15 proton +12 iron Corsika/CoREAS simulation for each air shower

-> likelihood analysis: *template fitting*^{*} to find X_{max} for each shower

Using the ~600 x (15 p +12 Fe) set of simulations

- Correct for reconstruction bias on an event-by-event basis
- Determine reconstruction uncertainty on an event-by-event basis
- Determine detection acceptance
- Determine remaining reconstruction bias given composition scenarios

Investigation of systematic uncertainties. Accounting for:

- Basic effects
- Residual bias checks
- : hadronic model in CORSIKA, GDAS atmosphere, Auger SD energy scale
- **Method specific effects** : data selection (acceptance), X_{max} reconstruction pipeline
 - : investigation of shower zenith/azimuth/core/... vs $<X_{max}>(E)$

Radboud University

Iron

Method: Reconstructing X_{max} from the radio footprint

400 300

Proton

* Phys. Rev. D 109, 022002 (2024): Method and detailed results of AERA Xmax

Measured

* Phys. Rev. D 109, 022002 (2024): Method and detailed results of AERA Xmax

Systematic uncertainties on the X_{max} distribution

- Basic effects
- Method specific effects : data selection (acceptance), X_{max} reconstruction
- Cross-checks

: hadronic model in CORSIKA, GDAS atmosphere, Auger SD energy scale

: residual bias checks with Zen/Az/core/... vs <X_{max}> and E

- Distributions of reconstructed AERA X_{max} in 1/6 energy bins
- vs Auger-mix, drawn with AERA {i.e., incl. resolution, acceptance, and reconstruction bias}.

AD test statistic checks if measured distribution could have been drawn from Auger-mix with detector effects. Compatible with Auger-mix (within stat+syst unc)

AERA results and 'AugerMix'

Results: Distribution AERA Xmax vs Auger-mix

<u>AD test</u>: **AERA** is compatible with 'AugerMix'

- Using reconstruction of X_{max} for our simulations we can calculate the bias when we assume the range of possible underlying compositions.
- Similarly, we can try to reconstruct all our simulations and see what fraction would be seen (acceptance) and what the effect is on the X_{max} distribution.

Reconstruction bias (for one energy bin)

