MOdifed Characteristics of Hadronic Interactions

in ultra-high-energy cosmic-ray showers:

implications for current and future observations

Jan Ebr, Jiří Blažek, Jakub Vícha, Tanguy Pierog, Eva Santos, Petr Trávníček, Nikolas Denner, Ralf Ulrich

Co-funded by the European Union

MINISTRY OF EDUCATION, YOUTH AND SPORTS ebr@fzu.cz

FORTE CZ.02.01.01/00/22_008/0004632

Modified hadronic interactions

Phys. Rev. D, 83:054026, 2011

- individual changes of multiplicity, elasticity and cross-section in CONEX - 1D simulations

- 215 citations

$$f(E, f_{19}) = 1 + (f_{19} - 1) \cdot \frac{\log_{10}(E/E_{\text{thr}})}{\log_{10}(10 \text{ EeV}/E_{\text{thr}})}$$

CONEX in Corsika: 3D information

MOCHI: CORSIKA 7.741 with CONEX option, Sibyll 2.3d

- nuclear projectiles treated as a set of p-Air interactions
- POS(ICRC2023)245
- POS(ICRC2021)441
- EPJ WoC 283:05005
- astro-ph/2410.15699

"Allowed" modifications and thresholds

Cross-section ($E_{thr} = 10^{16} \text{ eV}$)

- well constrained for p-p at LHC to a few %
- unc. in conversion to p-A limited by CMS p-Pb measurement

Multiplicity ($E_{thr} = 10^{15} \text{ eV}$) - no p-A data, limited rapidity coverage

Elasticity ($E_{thr} = 10^{14} \text{ eV}$)

- difficult at accelerators, limits from nuclear emulsion chambers
- recent LHCf neutron elasticity measurement?
- range of modifications limited by internal consistency

- energy 1018.7 eV
- proton and iron
- 5 zenith angles
- 1000 showers per "bin"
- 750 000 showers

Number of muons vs. X_{max} for all muons

Number of muons vs. X_{max} @ 500 meters

Number of muons vs. X_{max} @ 1000 meters

Number of muons vs. X_{max} @ 1500 meters

Muons at 1000 m (corrected for the effect of X_{max} shift) vs. Auger

8/20

Auger cross-section measurement

- modifications of elasticity change $\Lambda \rightarrow \sigma$ conversion: Auger CS = constraint in σ -elasticity space
- unmodified Sibyll 2.3d smack on data; uncertainty extrapolation with $f(E, f_{19})$

Ground particles: relative muon number fluctuations at 1000 meters

- not correlated with absolute changes in muon number, sensitive to high elasticity changes

Conclusions I

- changing cross-section, elasticity and multiplicity within reasonable limits can have major impact on air-shower properties

- the impact can be quite different for quantities depending on 3D geometry as opposed to 1D sums
- the changes of hadronic interactions indicated by the Pierre Auger Observatory are just reachable
 - but only with a *combination* of modifications!
 - and already in a tension with other measurements

Modified simulations as an estimate of modelling uncertainty

Shape of longitudinal profiles conserved, normalization less affected for EM energy

Modelling uncertainty vs. core distance

Muons at 1000 meters and proton/iron separation

Ratio between number of muons for iron and proton tends down when muons are added - consequence of using the superposition model for modifications in nuclear interactions

Muons at 1000 meteres and proton/iron separation: merit factor

Modifications affect both muon number and fluctuations - significant effect for maximal theoretical performance in proton/iron separation

 $MF = \frac{\langle A \rangle - \langle B \rangle}{\sqrt{\sigma_A^2 + \sigma_B^2}}$

Proton/iron separation and distance to shower axis

Full 3D simulations allow study of effects in ... 3D

- modified interactions may change the optimal geometry for a detector and/or data analysis

Proton/iron separation with different detectors

What we measure is not really "number of muons", but " N_{μ} at an energy established by other means".

- simplification: signal ratios
- at 1000 meters: strong correlations, but note non-zero intercepts

Proton/iron separation with different detectors

- at 500 meters more complicated: spread for CHARGED/EM due to elasiticity changes
- note once again the consequence of the energy threshold/superposition model combination
- other libraries can be made with different assumptions!

Conclusions II

- changing cross-section, elasticity and multiplicity within reasonable limits can have major impact on air-shower properties

- the impact can be quite different for quantities depending on 3D geometry as opposed to 1D sums
- the changes of hadronic interactions indicated by the Pierre Auger Observatory are just reachable
 - but only with a *combination* of modifications!
 - and already in a tension with other measurements
- even if some modifications are not realistic (after all, there is only one Universe), we can learn interesting insights
 - effects of 3D modifications are highly dependent on distance to shower axis
 - number of muons is more affected than EM energy density
 - proton/iron separation power can vary significantly
 - but note the implicit assumption on A-dependence of modifications

Do I use the three major models for my systematic uncertainty? What about using (up to) 75 instead!

BACKUP

Maximum of apparent muon production depth $X_{\mu,max}$

Apparent MPD distribution from muons reaching ground at r > 1000 m

- noisy, complex fitting procedure
- reliable only for larger zenith angle
- results preliminary!

Highly correlated with δX_{max} , but slightly steeper

22/20