CORSIKA8 A modern and universal framework for particle cascade simulations

Marvin Gottowik

for the CORSIKA8 Collaboration, Karlsruhe Institute of Technology (KIT)

UHECR2024 20.11.2024

Current CORSIKA 7

- Monte Carlo simulations essential for interpretation of measured air-shower data
- CORSIKA 7 has monolithic FORTRAN code, key developers retired. Challanging to navigate, maintain, and extend by physicists today.
- Hand-optimized code: fast, but incurs limitations, e.g. exp. atmospheric models
- Difficult to adapt to modern computing environments: MPI-parallelized, but no multithreading, no GPU parallelization
- More flexibel simulation tool is needed:
 - In-ice showers, cross-media showers, ...
 - complex radio-signal propagation in ice, ...

CORSIKA8simulation framework

- a modern reimplementation in C++, with focus on modularity
- designed with the needs of modern computing in mind
- coordinated by KIT, but as a true community effort
- First commit: Mon Apr 9 14:55:03 2018

CORSIKA 8 workshop, July 2023 at KIT

CORSIKA8simulation framework

- a modern reimplementation in C++, with focus on modularity
- designed with the needs of modern computing in mind
- coordinated by KIT, but as a true community effort

- More information / Get in contact:
 - https://www.iap.kit.edu/corsika/88.p
 hp
 - https://gitlab.iap.kit.edu/AirShowerP hysics/corsika/
 - https://mattermost.hzdr.de/corsika8/ channels/town-square

CORSIKA 8

marvin.gottowik@kit.edu | UHECR 2024 | Slide 4

CORSIKA 8 workshop, September 2024 at KIT

Status of CORSIKA 8

- code can be considered "physics-complete" and is openly available
- Many crucial improvements over the last two years
 - FLUKA as low-energy interaction mode
 - Sibyll 2.3d, QGSJETII-04, EPOS-LHC as high-energy interaction models. Also Pythia 8.3 (preliminary version) available for the first time, cf. poster by Chloé Gaudu,
 - EM: Photohadronic interactions, LPM effect, Particle thinning
 - Fully integrated Cherenkov-light calculation
 - Fully realistic radio emission calculation with two formalisms
- extensive validation versus CORSIKA 7 and other codes
- still polishing user-level aspects (simulation steering, documentation, ...)

Electromagnetic showers

- New code for electromagnetic component
 - Corsika 8: PROPOSAL 7.6.2
 - Corsika 7: customized version of EGS4

- Comparing a 100 TeV primary
 - General agreement on the <10% level for longitudinal and lateral profile, energy distribution
 - Likely due to particle tracking & multiple scattering treatment

CORSIKA 8 marvin.gottowik@kit.edu | UHECR 2024 | Slide 6

Electromagnetic showers

- New code for electromagnetic component
 - Corsika 8: PROPOSAL 7.6.2
 - Corsika 7: customized version of EGS4

• Comparing a 100 TeV primary

- General agreement on the <10% level for longitudinal and lateral profile, energy distribution
- Likely due to particle tracking & multiple scattering treatment

Tim Huege PoS(ICRC2023)310

Hadronic showers

- Longitudinal distributions for the averages of 300 vertical protoninduced 100 PeV air showers
- Dependence on interaction model
- Will be investigated in more detail
- Agreement for electrons/positrons, photons, muons and hadrons within ~ 10%

Radio emission

- Calcultion of radio emission from particle cascades fully implemented
 - "CoREAS" (endpoints) à la C7
 - "ZHS" à la ZHAireS
- Both formalism in same code, can compare for exact same air shower
- Generic structure: filter, formalism, and propagator can be configured separately
- Paper submitted to Astroparticle Physics, very positive review

Radio pulses

- Pulse for 1 PeV vertical shower at 100 m distance from core
- Pulses agree nicely for high-precision simulations

Here: 30-80 MHz, same for 50-350 MHz

Radio emission components

- Patterns and polarizations match predictions of CoREAS and ZHAireS
- modulus
- C8 produces slightly more signal with default setting of technical parameters $ec{v}$ imes
- Radiation energy converges to within 1-2% for high-precision simulations

 $ec{v}\, imes\,ec{B}$

ec v

C8 (CREAS) C8 (ZHS) C7 ZHirs

$$10^{00}$$
 10^{00} $10^{$

Energy Fluence [eVm⁻²]

CORSIKA 8 marvin.gottowik@kit.edu | UHECR 2024 | Slide 11

 $\vec{v} \times \vec{B}$ [m]

Cross media showers

Corsika8

1000

Depth g/cm2

Depth g/cm2

 $+e^{+}$

+u

Hadrons

Air | Ice

2000

1500

 10^{9}

 10^{8}

 10^{7}

 10^{6}

 10^{5}

 10^{4}

n

500

Number of particles

- Example: particle showers penetrating from air in to ice.
- Comparing Corsika8 with combination of Corsika7 + Geant4
- Rehadronization when the showers intersects the ice due to the dominance of the hadronic interaction. Missing in Geant4 due to absence of hadronic interaction models in-ice.
- Medium-specific propagators for radio emission. In ice: direct and reflected path

Expert release

- We will have an expert release for Christmas to gather broader feedback from the community
- Basic steering available, advanced one using config file under development
- Python library to read corsika8 output, examples scripts are provided

```
c8_air_shower --pdg 2212 --energy 1e5 --zenith 35 --azimuth 0
--filename test_shower
```

config.yaml energyloss interactions primary summary.yaml
CoREAS interaction_hist particles profile ZHS

energyloss: config.yaml dEdX.parquet summary.yaml

```
particles:
config.yaml particles.parquet summary.yaml
```

Summary

- Tremendous progress in the development of CORSIKA 8, considered "physics-complete".
- Expert release for Christmas, feedback from the community very much appreciated.
- Only single tool for simulation of cross-media showers.
- Validation against CORSIKA 7 results shows agreement generally on a $\approx 10\%$ level.
- CORSIKA 8 radio implementation successfully validated. ZHS and CoREAS formalisms converge at the same result within 1-2%.
- Already succesfully used by community working on radio emission in ice, excellent agreement with previous results

The CORSIKA8 Collaboration

J.M. Alameddine^{a,b}, J. Albrecht^{a,b}, J. Ammerman-Yebra^c, L. Arrabito^d, A.A. Alves Jr.^{e,f}, D. Baack^{a,b}, A. Coleman^g, H. Dembinski^{a,b}, D. Elsässer^{a,b}, R. Engel^e, A. Faure^d, A. Ferrari^e, C. Gaudu^h, C. Glaser^g, M. Gottowik^e, D. Heck^e, T. Huege^{e,i}, K.H. Kampert^h, N. Karastathis^e, L. Nellen^j, T. Pierog^e, R. Prechelt^k, M. Reininghaus^l, W. Rhode^{a,b}, F. Riehn^{m,c}, M. Sackel^{a,b}, P. Sampathkumar^e, A. Sandrock^h, J. Soedingrekso^{a,b}, R. Ulrich^e