

PIERRE AUGER OBSERVATORY Mass composition of Ultra-High Energy Cosmic Rays at Pierre Auger Observatory

UHECR2024, Malargüe, Argentina

Thomas Fitoussi on behalf of the Pierre Auger Collaboration

Pierre Auger Observatory

Hybrid detection

- ► Fluorescence Detector (FD)
 - 27 fluorescence telescopes at 4 different sites
 - ► 4 × 6 looking "down" → high energy
 - ► 3 looking "up" (HEAT) → low energy
- ► Surface Detector (SD)
 - 1660 water Cherenkov detectors

2/14

Reconstructing X_{max}

With FD

- ✓ Direct access to $X_{\max} \sim \ln A$
- $\pmb{\mathsf{X}}$ Duty cycle 10-15% \rightarrow limited statistic

Thomas Fitoussi - Mass Composition at Auger

3/14

$X_{\rm max}$ bias and resolution

 $X_{\rm max}$ moments from FD

- ► ICRC23 results (67.986 events) between 0.5 EeV and 102.8 EeV
- \blacktriangleright Elongation rate best fitted with 1 break at $\sim 10^{18.4} eV$

14

5

 X_{\max} moments from FD

- ► ICRC23 results (67.986 events) between 0.5 EeV and 102.8 EeV
- \blacktriangleright Elongation rate best fitted with 1 break at $\sim 10^{18.4} eV$
- The average mass increases above the break independently on the hadronic model used
- QGSJet II-04 $\sigma(X_{\text{max}})$ in tension with data

Energy evolution of nuclear fractions

- Fitting the observed X_{max} distributions using simulated (p, He, N, Fe) templates
- ankle (10^{18.7} eV): disappearance of protons
- highest energy dominated by medium mass nuclei

$X_{\rm max}$ from the Surface Detector data

7/14

With SD

- **X** No direct access to X_{\max}
- ✓ Duty cycle $\sim 100\%$ → large statistic
- X_{\max} estimation at the event level
- Cross-calibration with FD
- Training using simulations with EPOS-LHC

DNN architecture

- process time-dependent signal traces using recurrent networks (LSTMs)
- ► process shower footprint → exploit symmetry of the SD using hexagonal convolutions

Performance on simulations

Interaction model bias

- ▶ 1^{st} moment
 - QGSJet -5 g/cm^2
 - ► Sybill 2.3d −12 g/cm²
- ► 2nd moment
 - no strong dependency

Composition bias

- ► small for Auger mix
- for proton and iron, small above 10 EeV

Calibration with hybrid data

- Calibration of DNN predictions using Golden hybrid data (1642 events)
- Strong correlation ($\rho = 0.7$)
- ► Resolution from 40 g/cm²to 25 g/cm²

- $\blacktriangleright\,$ Bias between SD and FD $\sim-30~g/cm^2$
 - larger than expected from simulations
 - could be due to 'muon puzzle' / detector simulations
 - perform energy-independent calibration

Application to SD-1500 data

SD-1500 data

- High-quality selection
- ► 48824 events (×10 FD in the same energy range)

Results

- ► Excellent agreement with FD (ICRC19)
- transition to heavier and purer composition

14

Interpretation using interaction models

Sybill 2.3 and EPOS-LHC
consistent with SD and ED

QGSJet II-04
Disfavored by SD and FD

► Constant elongation rate compatible with FD results D_{10,SD} = 24.1 ± 1 g/cm², D_{10,FD} = 25.6 ± 2 g/cm²

12/14

- Constant elongation rate compatible with FD results $D_{10,SD} = 24.1 \pm 1 \text{ g/cm}^2$,
 - $D_{10,FD} = 25.6 \pm 2 \text{ g/cm}^2$
- ► Evidence for structure beyond

12/14

- Constant elongation rate compatible with FD results D_{10,SD} = 24.1 ± 1 g/cm²,
 - $D_{10,FD} = 25.6 \pm 2 \text{ g/cm}^2$
- ► Evidence for structure beyond

12/14

- Constant elongation rate compatible with FD results D_{10,SD} = 24.1 ± 1 g/cm²,
 - $D_{10,FD} = 25.6 \pm 2 \text{ g/cm}^2$
- Evidence for structure beyond
- Constant elongation rate rejected with 4.4σ
- One break rejected with 3σ
- Two breaks rejected with 2σ

12/14

- Constant elongation rate compatible with FD results
 D_{10,SD} = 24.1 ± 1 g/cm²,
 D_{10,FD} = 25.6 ± 2 g/cm²
- Evidence for structure beyond
- Constant elongation rate rejected with 4.4σ
- ▶ One break rejected with 3σ
- ▶ Two breaks rejected with 2σ
- Found kinks coincide with spectrum features

12/14

Thomas Fitoussi - Mass Composition at Auger

Comparison to astrophysical model

- One of the astrophysical scenarios describing the Auger data on the energy spectrum and FD X_{max} [JCAP 05 (2023) 024]
- Breaks at positions similar to the indications in SD X_{\max}

13/14

Summary

UHECR composition using FD and SD $X_{\rm max}$

- ► FD and SD measurement are in good agreements
- \blacktriangleright Transition to lighter composition until $\sim 10^{18.4} eV,$ then transition to heavier and purer composition
- ▶ The conclusion is invariant to the hadronic interaction models
- QGSJet II.04 predictions are strongly disfavored by the SD and FD data

Xmax with DNNs and SD statistics

- compared to FD, a 10-fold larger data set above 5 EeV
- \blacktriangleright evidence for a structure beyond constant elongation rate at 4.4σ
- possible breaks in proximity to the energy spectrum features

SD $X_{\rm max}$: 10.48550/arXiv.2406.06319 (accepted PRD), 10.48550/arXiv.2406.06315 (accepted PRL) FD $X_{\rm max}$: paper soon to be published

 $14 \, / \, 14$