

Measurement of cosmic-ray energy spectrum with the TALE detector in hybrid mode

Hitoshi Oshima for the TA Collaboration ICRR, the University of Tokyo oshima@icrr.u-tokyo.ac.jp

UHECR 2024, Malargüe, Mendoza, Argentina, Nov. 17 – 21, 2024

<u>Introduction</u>

TALE $(10^{15} - 10^{18} \text{ eV})$ & TA, TAx4 (>10^{18} \text{ eV}) can cover a wide-energy range of 5 orders of magnitude from 10^{15} eV to 10^{20} eV . TALE TA, TAx4

- Composition and energy spectrum, and
- Transition from galactic to extragalactic cosmic rays, we aim to measure the acceleration limit of galactic cosmic rays.

Physical location of the TALE detector

The TA & TALE detectors are located in Millard County, Utah, USA.

Analysis strategy: Hybrid analysis

Elevation angle [degree]

30

100

120

140

160

Azimuth angle [degree]

Hybrid analysis using FD and SD array

- X_{max} measurement \rightarrow Composition sensitive
- Energy resolution is improved using SD array for shower-axis detection.

200

180

220

4

Monte Carlo Simulation

Monte Carlo (MC) simulation is performed in the following processes:

(1) Air-Shower simulation (CORSIKA)

- Hadronic interaction model: QGSJETII-04 P, He, N, Si, and Fe
- Energy range: 16.2 \leq log E \leq 18.5
- Zenith angle: $\mathbf{0}^\circ \leq \mathbf{\theta} \leq \mathbf{70}^\circ$

"Reuse" events with random distributions in core position and azimuth angle. (2) SD simulation

- The energy deposit in each SD with Geant4 detector simulation
- Detector calibration using the monitor data
- Response of the SD electronics

(3) FD simulation

- Fluorescence and Cherenkov photons are generated.
- Telescope optics and detector calibration are taken into account.

(4) Hybrid analysis simulation

- Same processes for the data analysis are performed.

Event selection

<u>Hybrid trigger events: FD + any1 SD w/1 MIP</u>

Events with a fractional contribution to the total signal of fluorescence light less than 75% are defined as CL events, while the others are defined as FL events.

	CL	FL				
No Cut	Hybrid triggered events					
Selection 1	No saturated PMTs in TALE-FD					
Selection 2	Sel.1 + X _{max} is inside the geometrical field of view of the FDs + 210 g/cm ² < X _{max} + χ^2_{long} /ndf < 100					
Selection 3	-	Sel.2 + # of photo-electrons > 2000				
Selection 4	Sel.3 + Event duration > 100 ns	-				
Selection 5	Sel.4 + $\#$ of PMTs > 10	-				
Selection 6	Sel.5 + # of photo-electrons/# of PMTs > 50	-				
Selection 7	Sel.6 + Angular track length $>$ 6.5 deg	-				
Selection 8	Sel.7 + 16.5 < $\log(\text{Erec} / \text{eV})$ < 18.3 + 6	$\theta_{\text{zenith}} < 60^\circ$ + Good Weather				

Composition models used for this analysis

H4a model

TALE Hybrid X_{max} Fitting (THXF)

T. K. Gaisser, Astropart. Phys. **35**, 801 (2012).

K. Fujita, PoS(ICRC2023)401

H4a model and TALE Hybrid X_{max} Fit (THXF) result were used as the theoretical and the data-driven models, respectively.

Comparison between the data & MC prediction

Energy measurements

Points: Data, Histogram: MC (Area normalized)

Iterative D'Agostini unfolding

The Iterative unfolding uses Bayes' theorem to obtain an unsmearing matrix from the smearing matrix.

Unfolded spectrum $\rightarrow C'_i = \sum_{j=1}^{N_m} U'_{ij} N_j^{data}$

Number of events in measured bin j

G. D'Agostini, arXiv:1010.0632.

G. D'Agostini, Nucl. Instrum. Methods Phys. Res., Sect A 362, 487 (1995).

Resolution map of energy measurement

Energy distribution

Equation of energy spectrum

Number of events with unfolding

$$J(E_i) = \frac{\sum_{j=1}^{N_m} U_{ij} N_j^{\text{sel}}}{A\Omega(E_i) \cdot T \cdot \Delta E_i}$$

Effective exposure for the true energy spectrum

 $J(E_i) :$ $U_{ij} :$ $N_j^{sel} :$ $A\Omega (E_i) :$ T : $\Delta E_i :$

- : Differential Flux $[m^2 \cdot s^{-1} \cdot sr^{-1} \cdot eV^{-1}]$
- : Unsmearing matrix
 - Number of selected events
 - Effective aperture [m² · sr]
 - Observation time [s]
- : Width of i-th bin

Effective Exposure

Result: Energy Spectrum

MC studies with EPOS-LHC in progress.

Result: Power-Law fitting

Data: TALE Hybrid Observation with THXF model

Single Power-Law fitting

Broken Power-Law fitting

<u>Summary</u>

- Aim of the TALE hybrid analysis:
 - Using spectrum and composition measurements in $10^{16} \text{ eV} 10^{18} \text{ eV}$
 - ➡ Measure the acceleration limit of galactic cosmic rays
 - Separate galactic and extragalactic components
- Using the 1,247 hours observation data of the TALE hybrid detector
 - Data/MC comparison of the shower geometrical parameters
 - Measurement of the energy distribution
 - ➡ The data are generally reproduced by the MC simulation
- We measured the energy spectrum with TALE Hybrid observation
 - → We show the preliminary result of energy spectrum measurement
 - → Second Knee position, $log(E_{break}/eV)=16.98\pm0.06$

Thank you for your attention!

Auger site visit, Nov. 17, 2024

Resolution of energy measurement

TALE FD mono obs.

	Energy Resolution
Cherenkov dominant (All energy)	15.9%
Cherenkov dominant (E > 10 ^{16.7} eV)	8.7%
Fluorescence dominant	10.3%

TALE Hybrid Obs. 17.4 $< \log_{10}(E_0/eV) < 17.5$

	Energy Resolution		
Pure proton	+7.2%/-8.8%		
Pure iron	+6.6%/-6.4%		
	Preliminary		

TALE Hybrid Obs. Energy Resolution (MC)

<u>Resolution of Xmax measurement</u>

TALE FD mono obs.

	Xmax Resolution			
Cherenkov dominant (All energy)	46.43 g/cm ²			
Cherenkov dominant $(E > 10^{16.7} \text{ eV})$	35.93 g/cm ²			
Fluorescence dominant	58.87 g/cm ²			

R. U. Abbashi et al., Astrophys. J. 865, 74 (2018).

TALE Hybrid obs.		
	Xmax Resolution	
Pure proton	29.1 g/cm ²	
Pure iron	26.6 g/cm ²	
K. Fujita, Ph.D. thesis (2022).		

FIGURE 4.23: TALE Hybrid X_{max} angle reconstruction resolution histograms by evaluating $(X_{max recon} - X_{max thrown})$.

Spectrum index for MC weights

Iterative D'Agostini unfolding (1)

The relation between true and measured spectrum is written by

$$E_j = \sum_{i=1}^{N_t} S_{ji} C_i$$

where C_i is a number of events in true bin *i*, E_i is a number of events in measured bin *j*, S_{ji} is a smearing matrix, and N_t is the number true bins.

An unsmearing matrix can be obtained from the smearing matrix as

$$U_{ij} = \frac{P_{eff}(E_j | C_i) P_0(C_i)}{\sum_{i=1}^{N_t} P(E_j | C_i) P_0(C_i)},$$

where $P(E_j|C_i)$ is a probability of the true events in bin *i* measured in bin *j* written as $P(E_j|C_i) = \frac{N_{ji}}{C_i},$

21

where N_{ji} is the number of true events in bin *i* measured in bin *j*.

<u>Iterative D'Agostini unfolding (2)</u>

 $P_{eff}(E_j|C_i)$ is defined as:

$$P_{eff}(E_j|C_i) = \frac{\frac{N_{ji}}{C_i}}{\sum_{i=1}^{N_m} \frac{N_{ji}}{C_i}},$$

where N_m is number of measured bins.

 $P_0(C_i)$ is a prior probability representing the number of events in bin *i*, written as

$$P_0(C_i) = \frac{C_i}{\sum_{i=1}^{N_t} C_i}.$$

Therefore, the unfolded spectrum is

$$C'_i = \sum_{j=1}^{N_m} U_{ij} E^{\text{data}}_j,$$

where $\ensuremath{N_m}$ is the number of bins of measured spectrum.

Particle spectrum of the H3a and H4a models

$$\phi_i(E) = \sum_{j=1}^3 a_{i,j} E^{-\gamma_{i,j}} \times \exp\left[-\frac{E}{Z_i R_{c,j}}\right]$$

i: composition *j*: population $\phi_i(E)$: $dN/d\ln E$ $a_{i,j}$: Normalization constant $\gamma_{i,j}$: Integral spectral index Z_i : Atomic number $R_{c,i}$: Characteristic rigidity

	R_c	γ	р	He	CNO	Mg-Si	Fe
	γ for Pop. 1	_	1.66	1.58	1.63	1.67	1.63
	Population 1: 4 PV	See line 1	7860	3550	2200	1430	2120
	Pop. 2: 30 PV	1.4	20	20	13.4	13.4	13.4
H3a→	Pop. 3 (mixed): 2 EV	1.4	1.7	1.7	1.14	1.14	1.14
H4a→	Pop. 3 (Proton only): 60 EV	1.6	200	0	0	0	0

Spectra of the H4a model

Particle spectra

Calorimetric energy fraction

 \rightarrow use for the missing energy correction

Effective Exposure

Mixed composition model:

10¹⁴

10¹³

10¹²

16.6

Effective exposure [m² s sr]

H4a model

Preliminary ^{10¹⁴} Preliminary 10¹³ H4a composition model TALE Hybrid composition analysis Proton Helium Nitrogen Proton Nitrogen Silicon - Iron - Iron 10¹² 16.8 18 18.2 16.8 18.2 17 17.816.6 18 17 6 178 $\log_{10}(E_0/eV)$ $\log_{10}(E_0/eV)$

TALE data driven

Result: Energy spectrum

Result: Power-Law fiiting

