Energy spectrum measured by the Telescope Array Surface Detectors

Jihyun Kim^{1*}, Dmitri Ivanov¹, and Gordon Thomson¹ on behalf of the Telescope Array Collaboration ¹University of Utah

jihyun@cosmic.utah.edu

Outline

- Telescope Array Experiment
- Surface Detectors
- Surface Detector Event Reconstruction
- Spectral Features Measured by Telescope Array Surface Detectors
- Declination Dependence in the Cosmic Ray Spectrum
- Summary

Telescope Array Collaboration

R.U. Abbasi¹, Y. Abe², T. Abu-Zavvad^{1,3}, M. Allen³, E. Barcikowski³, J.W. Belz³, D.R. Bergman³, S.A. Blake³, I. Buckland³, W. Campbell³, B.G. Cheon⁴, M. Chikawa⁵. K. Endo⁶, A. Fedynitch^{5,7}, T. Fujii^{6,8}, K. Fujisue⁵, K. Fujita⁵, M. Fukushima⁵, G. Furlich[{] Z. Gerber³, N. Globus^{*9}, W. Hanlon³, N. Hayashida¹⁰, H. He⁹, R. Hibi², K. Hibino¹⁰, R. Higuchi⁹, K. Honda¹¹, D. Ikeda¹⁰, N. Inoue¹², T. Ishii¹¹, H. Ito⁹, D. Ivanov³. H.M. Jeong¹³, S. Jeong¹³, C.C.H. Jui³, K. Kadota¹⁴, F. Kakimoto¹⁰, O. Kalashev¹⁵ K. Kasahara¹⁶, S. Kasami¹⁷, Y. Kawachi⁶, S. Kawakami⁶, K. Kawata⁵, I. Kharuk¹⁵ E. Kido⁹, H.B. Kim⁴, J.H. Kim³, J.H. Kim^{†3}, S.W. Kim¹³, Y. Kimura⁶, R. Kobo⁶, I. Komae⁶, K. Komori¹⁷, Y. Kusumori¹⁷, M. Kuznetsov^{15,18}, Y.J. Kwon¹⁹, K.H. Lee⁴ M.J. Lee¹³, B. Lubsandorzhiev¹⁵, J.P. Lundquist^{3,20}, T. Matsuyama⁶, J.A. Matthews³ J.N. Matthews³, R. Mayta⁶, K. Miyashita², K. Mizuno², M. Mori¹⁷, M. Murakami¹⁷, I. Myers³, S. Nagataki⁹, M. Nakahara⁶, K. Nakai⁶, T. Nakamura²¹, E. Nishio¹⁷, T. Nonaka⁵, S. Ogio⁵, H. Ohoka⁵, N. Okazaki⁵, Y. Oku¹⁷, T. Okuda²², Y. Omura⁶, M. Onishi⁵, M. Ono⁹, A. Oshima²³, H. Oshima⁵, S. Ozawa²⁴, I.H. Park¹³, K.Y. Park⁴. M. Potts³, M. Przybylak^{†25}, M.S. Pshirkov^{15,26}, J. Remington³, D.C. Rodriguez³, C. Rott^{3,13}, G.I. Rubtsov¹⁵, D. Ryu²⁷, H. Sagawa⁵, R. Saito², N. Sakaki⁵, T. Sako⁵, S. Sakurai¹⁷, D. Sato², S. Sato¹⁷, K. Sekino⁵, P.D. Shah³, N. Shibata¹⁷, T. Shibata⁵ J. Shikita⁶, H. Shimodaira⁵, B.K. Shin²⁷, H.S. Shin^{6,8}, K. Shinozaki²⁵, D. Shinto¹⁷ J.D. Smith³, P. Sokolsky³, B.T. Stokes³, T.A. Stroman³, Y. Takagi¹⁷, K. Takahashi⁵ M. Takamura²⁸, M. Takeda⁵, R. Takeishi⁵, A. Taketa²⁹, M. Takita⁵, Y. Tameda¹⁷ K. Tanaka³⁰, M. Tanaka³¹, S.B. Thomas³, G.B. Thomson³, P. Tinyakov^{15,18}, I. Tkachev¹⁵ H. Tokuno³², T. Tomida², S. Troitsky¹⁵, Y. Tsunesada^{6,8}, S. Udo¹⁰, F. Urban³³ I.A. Vaiman¹⁵, M. Vrábel²⁵, D. Warren⁹, T. Wong³, K. Yamazaki²³, K. Yashiro²⁸, F. Yoshida¹⁷, Y. Zhezher^{5,15}, Z. Zundel³, and J. Zvirzdin³

¹Department of Physics, Loyola University Chicago, Chicago, Illinois 60660, USA A cademic Assembly School of Science and Technology Institute of Engineering. Shinshu University, Nagano, Nagano 380-8554, Japan ³High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112-0830, USA ⁴ Graduate School of Science, Osaka Metropolitan University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan ⁵Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul 426-791, Korea ⁶Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan ⁷Institute of Physics, Academia Sinica, Taipei City 115201, Taiwan ⁸Nambu Yoichiro Institute of Theoretical and Experimental Physics, Osaka Metropolitan University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan ⁹Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama 351-0198, Japan ¹⁰Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa 221-8686, Japan 11 Interdisciplinary Graduate School of Medicine and Engineering. University of Yamanashi, Kofu, Yamanashi 400-8511, Japan 12 The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan ¹³ Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon 16419, Korea ¹⁴ Department of Physics, Tokyo City University, Setagaya-ku, Tokyo 158-8557, Japan ¹⁵ Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia ¹⁶ Faculty of Systems Engineering and Science, Shibaura Institute of Technology, Minato-ku, Tokyo 337-8570, Japan ¹⁷ Graduate School of Engineering, Osaka Electro-Communication University, Neyagawa-shi, Osaka 572-8530, Japan ¹⁸Department of Physics, Yonsei University, Seodaemun-gu, Seoul 120-749, Korea ¹⁹ Center for Astrophysics and Cosmology, University of Nova Gorica, Nova Gorica 5297, Slovenia ²⁰ Faculty of Science, Kochi University, Kochi, Kochi 780-8520, Japan ²¹ Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan ²² College of Science and Engineering, Chubu University, Kasugai, Aichi 487-8501, Japan 23 Quantum ICT Advanced Development Center, National Institute for Information and Communications Technology, Koganei, Tokyo 184-8795, Japan ²⁴Astrophysics Division, National Centre for Nuclear Research, Warsaw 02-093, Poland ²⁵Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow 119991, Russia ²⁶Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan 689-798, Korea ²⁷ Department of Physics, Tokyo University of Science, Noda, Chiba 162-8601, Japan ²⁸ Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo 277-8582, Japan ²⁹ Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima 731-3194, Japan ³⁰Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki 305-0801, Japan ³¹ Service de Physique Théorique, Université Libre de Bruxelles, Brussels 1050, Belgium ³² Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan ³³ CEICO, Institute of Phusics, Czech Academy of Sciences, Prague 182 21, Czech Republic

125 members, 36 institutes, 9 countries

Telescope Array (TA) Experiment

• The largest cosmic ray observatory in the northern hemisphere

UHECR2024 @ Malargüe, Argentina 2024-11-20 5

Surface Detector Event Reconstruction (1/2)

- Use counter location and timing to locate shower core and direction
- Fit counter signal size to find lateral distribution
- Signal size at 800 m, S800, is the energy indicator

Surface Detector Event Reconstruction (2/2)

• Use S800 and zenith angle to look up energy (from CORSIKAproduced table)

• Set the energy scale to the fluorescence detectors

$$
E_{\text{Final}}=E_{\text{TBL}}/1.27
$$

Resolution and Sensitivity by Monte Carlo Simulation

- ⚫ Monte Carlo based on CORSIKA program used for resolution and exposure calculations.
- ⚫ TA SD Resolution:
	- 19% energy, 1.4° angular, $E \ge 10^{19.0}$ eV
	- 29% energy, 2.0° angular, $10^{18.5}$ eV \leq E \leq 10^{19.0} eV
	- 32% energy. 2.4° angular, $10^{18.0}$ eV $\leq E < 10^{18.5}$ eV

Linearity in Energy Reconstruction

These show the linearity of the TA energy reconstruction.

Crosscheck using Constant Intensity Cut (CIC) Method

• Comparison with the energy spectra obtained using the CIC method shows consistent results within 2% uncertainties.

Spectral Features in 16-year TA SD Data

Declination Dependence in the Cosmic Ray Energy Spectrum

2024-11-20 UHECR2024 @ Malargüe, Argentina 12

Two UHECR Observatories

Energy Spectrum Measurements in Northern/Southern Skies

Check using the Same Fluorescence Yield Model and Missing Energy

- Use the same fluorescence yield model as Auger.
- Use the same missing energy correction as Auger.
- The difference between TA and Auger above $10^{19.5}$ eV remains.

Simultaneous Fit: fit both spectra simultaneously

- Null hypothesis: Two spectra come from the same parent spectrum
- Binned log-likelihood, taken from Particle Data Group [S. Navas *et al.* (Particle Data Group), Phys. Rev. D 110, 030001 (2024)]

$$
-2\ln\lambda(\boldsymbol{\theta}) = 2\sum_{i=1}^{N} \left[\mu_i(\boldsymbol{\theta}) - n_i + n_i\ln\frac{n_i}{\mu_i(\boldsymbol{\theta})}\right],
$$
\n(40.16)

A smaller value of $-2 \ln \lambda(\hat{\theta})$ corresponds to better agreement between the data and the hypothesized form of $\mu(\theta)$. The value of $-2 \ln \lambda(\widehat{\theta})$ can thus be translated into a p-value as a measure of goodness-of-fit, as described in Sec. 40.3.3.1. Assuming the model is correct, then according to Wilks' theorem [10], for sufficiently large μ_i and provided certain regularity conditions are met, the minimum of $-2 \ln \lambda$ as defined by Eq. (40.16) follows a χ^2 distribution (see, *e.g.*, Ref. [9]). If there are N bins and M fitted parameters, then the number of degrees of freedom for the χ^2 distribution is $N-M$ if the data are treated as Poisson-distributed, and $N-M-1$ if the n_i are multinomially distributed.

- Number of data points of Auger (PRD 2020): 18 bins ($E \ge 10^{18.4}$ eV)
- Number of data points of TA (this work): 16 bins ($E \ge 10^{18.8}$ eV)
- Free parameters of the broken power law fit: 8 (normalization $+$ 3 break energies $+$ 4 power indices)
- $DOF = 18 + 16 8 = 26$

Fit both spectra in their full apertures: **8.0**

The red lines indicate the same broken power law function from the simultaneous fit.

2024-11-20 UHECR2024 @ Malargüe, Argentina 17

Test methodology: Fit both spectra in the common declination band

TA SD (2022) -15.7° < δ < 24.8°

The red lines indicate the same broken power law function from the simultaneous fit.

Auger (PRD 2020) -15.7° < δ < 24.8°

- log₁₀(E/eV)
TA has seen two anisotropic regions in the northern sky that extend down into the common declination band.
- We hypothesize that this may affect the spectrum.

TA Hotspot & Perseus-Pisces supercluster excess

J. Kim, PoS(ICRC2023)244

- 216 events (15-year TA SD data)
- Max local sig.: 4.8σ at (144.0°, 40.5°)
- Post-trial prob.: $P(S_{MC} > 4.8\sigma) = 2.7 \times 10^{-3} \rightarrow 2.8\sigma$
- 1125 events (15-year TA SD data)
- Max local sig.: **4.0** at (17.9°, 35.2°)
- Chance probability of having equal or higher excess close to the PPSC \rightarrow 3.3 σ

TA Inside/Outside Hotspot and PPSC excess regions

TA full aperture

Validate the methodology by looking at the common sky

- Restrict the common declination band $(-15.7^\circ < \delta < 24.8^\circ$ \rightarrow -5° $< \delta < 24.8^\circ$)
	- where TA exposure is very small and rapidly drops off
- Exclude all events within *a priori* established excess regions—masking the excess regions
	- where Auger exposure rapidly drops off

Fit both spectra: TA in $-5^{\circ} \le \delta \le 24.8^{\circ}$ & excl. Hotspot+PPSC: 1.8 σ

The red lines indicate the same broken power law function from the simultaneous fit.

Auger (PRD 2020) -15.7° < δ < 24.8°

TA SD (2022) -5 $^{\circ}$ < δ < 24.8 $^{\circ}$ no Hotspot & PPSC

 \rightarrow TA and Auger spectra are now in good agreement.

Summary

- We validated Monte Carlo carefully by comparing it with the distribution of the data.
- TA SD energy reconstruction is robust, as confirmed by three methods: 1) FD/SD comparison, 2) Monte Carlo, and 3) Constant intensity cut methods.
- The spectral features (ankle, *instep/shoulder*, and cutoff) in the 16-year TA SD data were presented.
- Simultaneous fit analyses were performed on the TA and Auger spectra.
- A log-likelihood sum per degree of freedom of **130.33/26 (8.00)** was obtained from the simultaneous fit to both TA and Auger spectra in their full apertures.
- On the other hand, a log-likelihood sum per degree of freedom of $40.12/26$ (1.8 σ) was obtained using the simultaneous fit in the common sky region after applying cuts to isolate the causes of an apparent discrepancy.
- These results indicate that there is a difference in the cosmic ray energy spectrum between the northern and southern skies.

Backup

TA×4 SD Energy Spectrum

- The energy spectrum was measured by the TA×4 SD using data collected for 3 years (October 2019– September 2022).
- Note that the statistics of the TA \times 4 SD-only events has been limited due to the absence of the inter-tower trigger system in this period.
- Consistent with the energy spectrum measured by the TA SD array.

Energy-Dependent Systematic Uncertainties

D. Ivanov +(Auger+TA Spectrum WG) EPJ Web of Conferences 210, 01002 (2019)

Table 1. Sources of energy-dependent reconstruction bias in TA

Table 2. Sources of energy-dependent reconstruction bias in Auger

→ "We have investigated the systematic uncertainties of TA and Auger that would produce the energy-dependent biases in their energy spectra, and we have found that such biases are constrained to -0.3 \pm 9% for TA and \pm 3% for Auger."

Previous Report from the Spectrum WG

- Auger-TA cutoffs agree in the Auger-TA common declination band
- Disagreement across full sky and agreement in the common declination band has been seen consistently since UHECR 2014

- Differences in the cutoff energies
- log(E/eV)=**19.84 ±0.02** for higher declination (24.8°–90°)
	- log(E/eV)=**19.65 ±0.03**

for lower declination $(-16^{\circ}-24.8^{\circ})$

- The local significance is **4.8.**
- The global significance of the difference is estimated to be **4.4.**
- No instrumental causes were found. This difference implies it is astrophysical in nature.