Measuring the Proton-Proton Interaction Cross Section with Hybrid Data of the Pierre Auger Observatory

Olena Tkachenko for Pierre Auger Collaboration

UHECR 2024 Malargue, Argentina

DAG

4 11 1

Cross sections for UHECR

 $rac{dp}{dX_1} = rac{1}{\lambda_{
m int}} {
m e}^{-X_1/\lambda_{
m int}}$

 $\sigma^{
m int} = rac{m_{
m air}}{\lambda^{
m int}}$

p-p cross sections

20/11/2024

クへへ <mark>1/13</mark>

Cross sections for UHECR

 $\sigma^{
m int} = rac{m_{
m air}}{\lambda^{
m int}}$

p-p cross sections

 $X_{\rm max}$ distribution tail:

• $f(X_{\rm max}) \sim e^{-X_{\rm max}/\Lambda_{\eta}}$

proton-dominated

20/11/2024

1/13

Olena Tkachenko

Standard approach: proton-proton cross section from the tail fit

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

э

Standard approach: proton-proton cross section from the tail fit

*In original analysis (Phys. Rev. Let. 109, 2012) $\sigma_{
m p-air}$ was evaluated first and then converted into $\sigma_{
m pp}$

Olena Tkachenko

20/11/2024 2/13

Standard approach: proton-proton cross section from the tail fit

*In original analysis (Phys. Rev. Let. 109, 2012) $\sigma_{
m p-air}$ was evaluated first and then converted into $\sigma_{
m pp}$

Olena Tkachenko

p-p cross sections

20/11/2024 2/13

Simultaneous Mass Composition and Cross Section Measurement

Why?

Assumptions in the Standard Analyses:

Mass Composition:

Assumes validity of a specific interaction model.

• Interaction Cross Section:

Relies on a proton-dominated tail of the X_{max} distribution.

Simultaneous Mass Composition and Cross Section Measurement

Why?

Assumptions in the Standard Analyses:

Mass Composition:

Assumes validity of a specific interaction model.

• Interaction Cross Section:

Relies on a proton-dominated tail of the X_{max} distribution.

- Vary the proton-proton cross section
- Perform a standard composition fit

< ∃→

Image: A matrix

Simultaneous Mass Composition and Cross Section Measurement

? Why?

Assumptions in the Standard Analyses:

• Mass Composition:

Assumes validity of a specific interaction model.

• Interaction Cross Section:

Relies on a proton-dominated tail of the $X_{\rm max}$ distribution.

♀ How?

- Vary the proton-proton cross section
- Perform a standard composition fit

self-consistent estimation of the interaction cross sections and cosmic-ray primary composition

_			
 lena	L KOC	hen	

p-p cross sections

20/11/2024

• get the X_{max} distributions for the discrete set of $f_{\text{lg}E}^{\text{pp}}$ values;

< 3

- get the X_{max} distributions for the discrete set of f^{pp}_{leE} values;
- perform the 4-component binned maximum likelihood mass composition with for varied:
 - rescaling factor $f_{\text{lg}E}^{\text{pp}}$ [0.2, 3.0]
 - shift in the $X_{\rm max}$ [-50, 40] g/cm²

- **(1)** get the $X_{\rm max}$ distributions for the discrete set of f_{lgE}^{pp} values;
- 2 perform the 4-component binned maximum likelihood mass composition with for varied:
 - rescaling factor $f_{l\sigma F}^{pp}$ [0.2, 3.0]
 - shift in the X_{max} [-50, 40] g/cm²

- get the X_{max} distributions for the discrete set of f^{pp}_{lgE} values;
- perform the 4-component binned maximum likelihood mass composition with for varied:
 - rescaling factor $f_{\mathrm{lg}E}^{\mathrm{pp}}$ [0.2, 3.0]
 - shift in the $X_{\rm max}$ [-50, 40] g/cm²
- sum χ^2 for each δX_{max} and f_{lgE}^{pp} over the considered energy range;

- **1** get the $X_{\rm max}$ distributions for the discrete set of f_{loF}^{pp} values;
- 2 perform the 4-component binned maximum likelihood mass composition with for varied:
 - rescaling factor $f_{l\sigma F}^{pp}$ [0.2, 3.0]
 - shift in the X_{max} [-50, 40] g/cm²
- 3 sum χ^2 for each δX_{max} and $f_{\text{lg}F}^{\text{pp}}$ over the considered energy range;
- **(4)** find the best-fit χ^2 and get the corresponding cross section $\sigma_{\rm pp}$, shift $\delta X_{\rm max}$, and composition.

Systematic uncertainties

Origin	Impact on $\sigma_{ m pp},$ %	Impact on $\delta X_{ m max}$, g/cm 2
Energy scale	-3.1	$^{+6}_{-4}$
Detector effects	$^{+7}_{-12}$	\pm 1
<i>E</i> -dependent X_{\max} syst.	± 2	\pm 7
Composition 🧹	$^{+3}_{-7}$	+5
Elasticity	$^{+15}_{-17}$	$^{+1}_{-3}$
Multiplicity	+9	$^{+1}_{-8}$

Under evaluation: mass-dependent shift in X_{\max}

Decrease in uncertainty compared to standard analyses:

• up to 25% He-fraction bias;

• $X_{\rm max}$ scale systematics.

< 口 > < 円

Composition-related bias

Simulations for 10^{17.8}-10^{17.9} eV energy bin

Olena Tkachenko

20/11/2024

э

Composition-related bias

*fits are shown for one energy bin

Olena Tkachenko

- Lowest $E: N \sim 10^4$
- Highest $E: N \sim 50$
- Considering the χ^2 sum over all energies compensates for the possible bias contribution from the highest energies

p-p cross sections

Why fitting a shift in X_{max} matter Fit with the modified Sibyll 2.3d to QGSJETII.4 and Sibyll 2.1 simulations

*The fitted X_{\max} scales are close to the differences between the models

	~		_			
_		000		100	000	100
•	- 1			Nac		κ.

20/11/2024 9/13

Why fitting a shift in X_{max} matter Fit with the modified Sibyll 2.3d to QGSJETII.4 and Sibyll 2.1 simulations

*The fitted X_{\max} scales are close to the differences between the models

Olena Tkachenko

p-p cross sections

20/11/2024 9/13

Analysis Results Simulations with AugerMix

Olena Tkachenko

p-p cross sections

20/11/2024

Analysis Results Simulations with AugerMix

20/11/2024

*AugerMix==composition as observed in Auger data

*statistical uncertainty on the mass & xsec fit is from averaging the 100 sim. data realizations

Olena Tkachenko

p-p cross sections

Analysis Results

Simulations with AugerMix, including possible systematics

*AugerMix==composition as observed in Auger data *statistical/systematical uncertainties correspond to one sim. data realization

Olena Tkachenko

20/11/2024

Summary

Simultaneous estimation of the cosmic-ray mass composition and proton-proton interaction cross section:

- Remove degeneracy from previous analyses:
 - independent on the underlying composition;
 - independent on the underlying cross section;
- Improvement in the statistical/systematic uncertainty compared to standard analyses:
 - supressed He fraction-related systematics
 - supressed X_{\max} scale systematics
- Higher confidence in the estimation;

Future plans

- Careful evaluation of the potenital biases and systematics
- Apply to the full Phase I Auger data

20/11/2024

Back-up

-		_			
- ()	ena		kac	hen	ko
<u> </u>	Ciriu		<i>nuc</i>	il Citi	r co

・ロト ・四ト ・ヨト ・ヨト

3

Mass composition from data

*default cross section and X_{\max} scale

Olena Tkachenko

20/11/2024

4 E

13/13

э

Energy-dependent X_{\max} systematics

Distribution of fit results assuming the energy-dependent shifts in X_{\max} scale

Energy-dependent X_{max} systematics

Distribution of fit results assuming the energy-dependent shifts in X_{\max} scale

Mass composition measurements: effect of cross section rescaling

Olena Tkachenko

p-p cross sections

20/11/2024

Fit results for the different composition scenarios

*Contstant composition over the considered energy range *Number of events in each energy bin the same as in Auger data

Olena Tkachenko

p-p cross sections