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Outline

‣Cosmic rays with IceCube 

‣Low-energy muons with IceTop 

‣High-energy muons in IceTop-InIce coincidences 

‣Consistency of observations 

‣Future instrumentation 

‣Summary
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IceTop & IceCube in-ice

‣ IceTop

• ~1 km2 air-shower array


• 162 ice-Cherenkov tanks 

‣ IceCube in-ice array

• ~1 km3 Cherenkov detector


• ~5000 Digital Optical Modules 

‣ Combined: unique EAS detector

• PeV - EeV primary energy 

• Electromagnetic component


• Surface muons & high-energy muons
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~700 g/cm2



Shower reconstruction with IceTop
‣ Reconstruction using surface signals


• Core position


• Direction 


• Shower size  

• LDF slope  

‣ Shower size - energy relation

• Dominated by EM component


•  proxy for shower energy


‣ Analyses in this presentation

• Core contained in IceTop


• Near-vertical:  ( )

(θ, ϕ)

S125

β

S125

cos θ > 0.95 θ ≲ 18∘
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‣ Surface muon density

• IceTop-only analysis


• Near-vertical  ( ) 


• Lateral distance of 600 m and 800 m 

• Model dependence

❖ QGSJet-II.04 / Sibyll 2.1 ≈ 1.2

❖ EPOS-LHC / Sibyll 2.1 ≈ 1.3

cos θ > 0.95 θ ≲ 18∘

GeV muons in IceTop
Goal & simulation predictions

5*Sibyll 2.3d not included in this work

Adapted from [IceCube Collaboration, Phys.Rev.D 106 (2022)]



GeV muons in IceTop

‣ Muon signals

• Single muons produce typical signal in tanks


• ~1 Vertical Equivalent Muon or VEM


‣ Muon thumb signature

• Charge-distance histogram of many events


• Muon signal visible at large lateral distance

6

Muon signature
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[IceCube Collaboration, Phys.Rev.D 106 (2022)]



GeV muons in IceTop

‣ Distribution at various distances fit with

• EM response model


• Muon response model


• Uncorrelated background


‣  as function of energy and distance

• Final results derived for 600 m and 800 m

⟨ρμ⟩
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Signal distribution fits
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GeV muons in IceTop

[IceCube Collaboration, Phys.Rev.D 106 (2022)]

‣  in near-vertical EAS (600m & 800m)

• MC correction factors applied based on different 

hadronic interaction models 


• 5%-15% difference in  derived with different models

ρμ

ρμ



‣  in near-vertical EAS (600m & 800m) 

•   

• Predictions from flux models: H3a, GST, GSF


• Sibyll 2.1 agrees best, post-LHC models show lighter mass

ρμ

z =
ln⟨Nμ⟩ − ln⟨Nμ⟩p

ln⟨Nμ⟩Fe − ln⟨Nμ⟩p
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GeV muons in IceTop

[IceCube Collaboration, Phys.Rev.D 106 (2022)]



‣ High-energy muon multiplicity

• IceTop-InIce coincident events


• Near-vertical  ( ) 


• Muons with  at surface 

• Model dependence

❖ QGSJet-II.04 / Sibyll 2.1 ≈ 1.05

❖ EPOS-LHC / Sibyll 2.1 ≈ 0.95

cos θ > 0.95 θ ≲ 18∘

Eμ > 500 GeV
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TeV muons in coincident events

[S. Verpoest, PoS ICRC2023 (2023) 207]

Goal & simulation predictions



TeV muons in coincident events

‣ Energy loss reconstruction

• Signal is combination of energy loss of many muons


• Algorithm reconstructs energy deposited in 20 m segments 
along shower axis


• Energy loss profile becomes input to neural network
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Bundle energy loss



‣ Neural network

• Inputs:


❖ IceTop: , 


❖ In-Ice: energy loss vector


• Output


❖ Primary energy  

❖ # muons > 500 GeV in the shower 

S125 θ

E

Nμ
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TeV muons in coincident events
Neural network



Results
‣  (> 500 GeV) in near-vertical EAS


• MC correction factors applied derived with 
different hadronic interaction models 


• ~5% difference in  derived with different models

⟨Nμ⟩

Nμ

13[S. Verpoest, PoS ICRC2023 (2023) 207]



Results
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z =
ln⟨Nμ⟩ − ln⟨Nμ⟩p

ln⟨Nμ⟩Fe − ln⟨Nμ⟩p

‣  (> 500 GeV) in near-vertical EAS 

•  

• Predictions from flux models: H3a, GST, GSF


• All models agree well

⟨Nμ⟩

[S. Verpoest, PoS ICRC2023 (2023) 207]



GeV vs TeV muons
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‣ Comparison of two analyses

• High-energy muons vs surface muons at large distance


• GeV  indicate lighter composition in post-LHC models 

• Various studies ongoing to improve/extend analyses

❖ Energy range, inclination, fluctuations, GeV-TeV correlations, systematics...

μ



Other observables
‣ Preliminary work compares


• IceTop GeV muon density 


• High-energy muon bundle energy loss  (~ )


• IceTop LDF slope 


→ Inconsistencies in all models tested!

ρμ

dE/dX Nμ

β

16[S. Verpoest, PoS ICRC2021 (2021) 357]



Other observables
‣ Preliminary work compares


• IceTop GeV muon density 


• High-energy muon bundle energy loss  (~ )


• IceTop LDF slope 


→ Inconsistencies in all models tested!

ρμ

dE/dX Nμ

β

17

‣ LDF slope 

• Combination of EM and muons


• New reconstruction attempts to disentangle, fitting signal 
models for both → will give more clarity on origin of issue

β
[M. Weyrauch & D. Soldin, PoS ICRC2023 (2023) 357]



Future instrumentation

‣ Surface Enhancement

• Scintillators → Improved EM/μ separation


• Radio antennas → Shower maximum & energy
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Prototype station @ IceTop



‣ Surface Enhancement

• Scintillators → Improved EM/μ separation


• Radio antennas → Shower maximum & energy 

‣ IceCube Upgrade

• Denser instrumentation may benefit bundle studies


• Calibration devices → improved ice models

19

Future instrumentation



‣ Surface Enhancement

• Scintillators → Improved EM/μ separation


• Radio antennas → Shower maximum & energy 

‣ IceCube Upgrade

• Denser instrumentation may benefit bundle studies


• Calibration devices → improved ice models 

‣ IceCube-Gen2

• Increased statistics


• Larger opening angle for coincidences
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Future instrumentation



Summary
‣ Muon analyses in IceCube


• GeV muon density & TeV muon multiplicity in near-vertical showers


• 2.5 PeV - 100 PeV primary energy

❖ TeV muons


• Agree with expectations from flux models

❖ GeV muons at large distance


• Post-LHC models yield lighter mass than expected


 tension between GeV & TeV muons in QGSJet-II.04 and EPOS-LHC! 
 

• Outlook

• Extension of existing analyses & new analyses


• Additional instrumentation


 IceCube will continue to provide tests and constraints for hadronic interactions in EAS!

→

→ 21





Backup



Muon measurements
‣ Differences in muon energy spectrum in EAS

24[F. Riehn et al., Phys. Rev. D 102 (2020)]
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Neural network reconstruction
‣ Neural network


• Inputs:


❖ IceTop: , 


❖ In-Ice: energy loss vector


• Output


❖ Primary energy 


❖ # muons > 500 GeV in the shower 


‣ Training

• Sibyll 2.1


• p, He, O, Fe

S125 θ

E

Nμ
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Correction factor

‣ Derive  in  bins


‣ Resulting biases in MC

• Reconstructed in bins of reconstructed


• Ratio versus true values


‣ Correction factors

• Fit with parabola


• Depend on primary!

⟨Nμ⟩ E0

26



Iterative correction
‣ Correction factor is function of lnA


• Interpolate correction factors for p & Fe   
         


• Composition estimate from muon measurement    
          
 

‣ Iterative procedure

•  estimate →  → updated  → ... → convergence

𝒞(ln A) = 𝒞p +
𝒞Fe − 𝒞p

ln 56
ln A

ln⟨Nμ⟩ − ln⟨Nμ⟩p

ln⟨Nμ⟩Fe − ln⟨Nμ⟩p
≈

⟨ln A⟩
ln AFe

⟨Nμ⟩ 𝒞 ⟨Nμ⟩
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Method reproduces true muon  multiplicity regardless of mass   composition 

(remaining differences included 
as systematic uncertainty)

MC tests (TeV mu)



Comparison of individual results
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Checks of neural network analysis

‣ Performed different checks related to 
energy reconstruction


• Separate neural network from  reconstruction


❖ IceTop input --> neural net --> E


❖ IceCube input --> neural net --> N 


• Energy reconstruction based on S125, as used in 
GeV muon density analysis


• Neural network based on EPOS-LHC 

→ all agree with the nominal result! 

Plots will be included in paper (in progress). 

Nμ
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MC tests (GeV mu)
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Muon density reproduced well 
for different primaries


Large uncertainty from mass 
uncertainty in corrction factor



Comparison of individual results
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Model average



Systematics
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GeV muon density TeV muon multiplicity

Snow correction: ~3%


VEM calibration: ~3%


Ice model & DOM efficiency: ~ +14%, -9%


Correction method: ~4%


Atmosphere: ~2.5%


