

Overview of hadronic interaction studies at the Pierre Auger Observatory

Jakub Vícha* for the Pierre Auger Collaboration

*FZU - Institute of Physics of the Czech Academy of Sciences, Prague

vicha@fzu.cz

The Pierre Auger Observatory - the best instrument to study hadronic interactions above $\sqrt{s} \approx 50$ TeV

SD signal

- muon content
 - from buried scintillators, θ<45°
 - → from N₁₉, θ >65°
- muon production depth
 for core distance
 - r > 1500m, θ>65°
- muon energy spectrum
 - from attenuation with θ and r
- rise time of signal vs. r

FD longitudinal profile

- estimation of primary masses from X_{max} fits
- interpretation of X_{max}
 moments using In A
- p-air cross-section from tail of X_{max} distribution
- average shape of longitudinal profiles
- frequency of anomalous showers

see details about hadronic interactions in the R. Conceicao's invited review

UHECR 2024

The Pierre Auger Observatory - the best instrument to study hadronic interactions above $\sqrt{s} \approx 50$ TeV

SD signal

- muon content
 - from buried scintillators, θ<45°
 from N = θ>65°
- muon production depth
 for core distance
 r > 1500m, θ>65°
 [Phys. Rev. D 90 (2014) 012012]
- muon energy spectrum
 from attenuation with θ and r
- rise time of signal vs. r [Phys. Rev. D 96 (2017) 122003]

+ neutrons in SSDs, see talk of T. Schulz

not covered here, see references

FD longitudinal profile

- estimation of primary masses from X_{max} fits
- interpretation of X_{max} moments using In A
- p-air cross-section from tail of X_{max} distribution
- average shape of longitudinal profiles [JCAP 03 (2019) 018]
- frequency of anomalous showers

[EPJ Web of Conferences 144 (2017) 01009]

UHECR 2024

The Pierre Auger Observatory - the best instrument to study hadronic interactions above $\sqrt{s} \approx 50$ TeV

Especially for combination of SD and FD observables !

UHECR 2024

PIERRE AUGER OBSERVATORY

Observables relevant to hadronic interaction models

UHECR 2024

SD signal

- muon content
 from buried scintillators, θ<45
 - → from N₁₉, θ>65°
- muon production depth
 for core distance
 r > 1500m, θ>65°
- muon energy spectrum
 - from attenuation with
 θ and r
- rise time of signal vs. r

- very hard in general with SD only
- large systematics from energy scale
- multi-detector approach necessary:
 - → SD+FD at different zenith angles
 - WCD+RPC+SSD+UMD+RD
 @ AugerPrime

see R. Conceicao's invited review

+ Underground Muon Detector

UHECR 2024

UHECR 2024

J. Vícha (FZU): Overview of hadronic interaction studies at the Pierre Auger Observatory

7/25

UHECR 2024

UHECR 2024

UHECR 2024

Ground signal + Longitudinal profile

- inclined showers + FD -> $\sigma(N_{\mu})$
- correlation between X_{max} and S(1000)
- top-down approach -> R_{had}
- applying shower-universality approach -> R_{had}
- 2-dim distributions [S(1000),X_{max}] -> $R_{had}(\theta)$, ΔX_{max}

Ground signal + Longitudinal profile

• inclined showers + FD -> $\sigma(N_{\mu})$

- correlation between X_{max} and S(1000)
- top-down approach -> R_{hac}
 - confirmation of a problem to describe the size of the muon content: factor ~1.3-1.6
 - muon fluctuations are consistent with data (no obvious problem in the first interaction)
 - → Strong constraints on the Lorentz invariance violation

(journal publication in preparation)

UHECR 2024

Ground signal + Longitudinal profile

- inclined showers + RD → <Nµ> ~10^{18.6-19.5} eV
 [PoS(ICRC2023)345]
- AERA phase II
 AERA phase II
- proof of concept: radio + WCD
- muon scale compatible with previous results
- journal publication in preparation

Ground signal + Longitudinal profile

10^{18.5-19.0} eV

- inclined showers + FD -> $\sigma(N_{\mu})$
- correlation between X_{max} and S(1000)

- ~model-independent estimator of spread of beam masses
- >5σ tension with light masses from X_{max} fits for QGSJet II-04 (too shallow X_{max} scale)

UHECR 2024

10¹⁹ eV

Combining SD and FD observables

Ground signal + Longitudinal profile

- inclined showers + FD -> σ(N_µ)
- correlation between X_{max} and S(1000)
- top-down approach -> R_{had} ~ 1.3 1.6 !

[Phys. Rev. Lett. 117 (2016) 192001]

- applying shower-universality approach -> R_{had}
- 2-dim distributions [S(1000),X_{max}] -> $R_{had}(\theta)$, ΔX_{max}
- mass from measured X_{max} depends on MC X_{max} scale
- ~2-3σ tension with strong dependence on energy scale

UHECR 2024

0

1.2

1.4

 $sec(\theta)$

1.6

1.8

2

Ground signal + Longitudinal profile

applying shower-universality approach
 -> R_{had} ~ 1.1 - 1.3 [PoS(ICRC2023)339, arXiv:2405.03494]

2-dim c see poster of M. Stadelmaier

- $\sim 2\sigma$ tension
- R_{had} smaller than in top-down approach
- ~insensitive to the MC $\rm X_{max}$ scale
- journal publication in preparation

UHECR 2024

Mass composition & tests of hadronic interactions

Improvement in data description

10^{18.5-19.0} eV

PIERRE

[Phys. Rev. D 109 (2024) 102001]

$\ln \mathscr{L}_{\min}$	EPOS-LHC	QGSJET-II-04	SIBYLL 2.3d
none	2022.9	4508.0	2496.5
$\Delta X_{\rm max}$	738.6	1674.8	1015.7
$R_{\rm had} = {\rm const.}$	489.2	684.4	521.6
$R_{\rm had}(\theta)$	489.2	673.9	517.6
$R_{\rm had} = {\rm const.} \text{ and } \Delta X_{\rm max}$	452.2	486.7	454.2
$R_{\rm had}(\boldsymbol{\theta})$ and $\Delta X_{\rm max}$	451.9	476.3	451.6

UHECR 2024

Improvement in data description

[Phys. Rev. D 109 (2024) 102001]

$\ln \mathscr{L}_{\min}$	EPOS-LHC	QGSJET-II-04	SIBYLL 2.3d
none	2022.9	4508.0	2496.5
$\Delta X_{\rm max}$	738.6	1674.8	1015.7
$R_{\rm had} = {\rm const.}$	489.2	684.4	521.6
$R_{\rm had}(\boldsymbol{\theta})$	489.2	673.9	517.6
$R_{\rm had} = {\rm const.} \text{ and } \Delta X_{\rm max}$	452.2	486.7	454.2
$R_{\rm had}(\theta)$ and $\Delta X_{\rm max}$	451.9	476.3	451.6

UHECR 2024

PIERRE AUGER 10^{18.5-19.0} eV

Improvement in data description

[Phys. Rev. D 109 (2024) 102001]

p-values of fits from MC-MC tests > 10% for all three models

	$\ln \mathscr{L}_{\min}$	EPOS-LHC	QGSJET-II-04	SIBYLL 2.3d
	none	2022.9	4508.0	2496.5
	$\Delta X_{\rm max}$	738.6	1674.8	1015.7
	$R_{\rm had} = {\rm const.}$	489.2	684.4	521.6
	$R_{\rm had}(\boldsymbol{ heta})$	489.2	673.9	517.6
	$R_{\rm had} = {\rm const.} \text{ and } \Delta X_{\rm max}$	452.2	486.7	454.2
ŧ	$R_{\rm had}(\theta)$ and $\Delta X_{\rm max}$	451.9	476.3	451.6

Significant improvement >5 σ using R_{had} and ΔX_{max} (Likelihood ratio tests for nested model using Wilks' theorem)

UHECR 2024

PIERRE

10^{18.5-19.0} eV

Fitted parameters

[Phys. Rev. D 109 (2024) 102001]

UHECR 2024

10^{18.5-19.0} eV

Attenuation of hadronic signal with zenith angle

[Phys. Rev. D 109 (2024) 102001]

 $R_{had}(heta_{max})$

 $R_{had}(\theta_{min})$

indication of harder muon spectra in QGSJet II-04 than in data

UHECR 2024

Scanning in combinations of experimental systematics

UHECR 2024

Summary of tests of models using Auger data

test	energy / Ee	$V \theta / ^{\circ}$	Epos-LHC	QGSJET-II-04	SIBYLL 2.3d
X _{max} moments	\sim 3 to 50	0 to 80	no tension	tension	no tension (2.3c)
X_{max} : $S(1000)$ correlation	3 to 10	0 to 60	no tension	tension	no tension (2.3c)
mean muon number	$\sim \! 10$	${\sim}67$	tension	tension	tension
mean muon number	0.2 to 2	0 to 45	tension	tension	
fluctuation of muon number	4 to 40	${\sim}67$	no tension	no tension	no tension
muon production depth	20 to 70	${\sim}60$	tension	no tension	
<i>S</i> (1000)	$\sim \! 10$	0 to 60	tension	tension	
[X _{max} , S(1000)] fits	3 to 10	0 to 60	tension	tension	tension

- all models have problems ...
- a need to describe consistently both X_{max} and ground signal
 issue in both observables !

UHECR 2024

Summary on tests of models of hadronic interactions

- Indications of a problem to describe Auger data by models in many analyses
 - → combinations of measurements of different shower components are powerful tests of models
- Current models of hadronic interactions are proven to fail to describe combined FD+SD data at 3-10 EeV with more than 5σ !
 - possible underestimation of experimental systematics ruled out
 - possibility of a heavier mass composition should be considered
 - \rightarrow alleviation of the "muon problem" but start of the "X_{max} problem"
- New models of hadronic interactions (EPOS 4(LHCR), QGSJet III, Sibyll*, Pythia 8, ...) and new air-shower generator (CORSIKA 8) are approaching
- AugerPrime (2024-2035) will be the best cosmic-ray testing facility for hadronic interactions at $\sqrt{s} \sim 10-200$ TeV
- And new methods (Machine Learning) and more data ... Stay tuned !

Backup slides

UHECR 2024

[Phys. Rev. D 90 (2014) 012012]

10^{19.3-19.8} eV

SD signal

UHECR 2024

J. Vícha (FZU): Overview of hadronic interaction studies at the Pierre Auger Observatory

[Phys. Rev. D 109 (2024) 094019]

UHECR 2024

FD longitudinal profile

- so far consistent within ~2σ with models
- smaller systematics on aerosol measurement could improve constraints
 - average shape of longitudinal profiles
 - frequency of anomalous showers

loa(E [eV]

[EPJ Web Conf. 144 (2017) 01009]

FD longitudinal profile

- % effect at 10^{18} eV, % effect at 10^{16} eV
- hard to reject presence of clouds asses from X_{max} fits
 - → additional cloud measurement is needed
- possible constraints on presence of lightest primaries (and cross-section/elasticity)
- no application to the data yet

proton

🛧 helium 🖶 iron

lg(E/eV)

- frequency of anomalous showers

[EPJ Web of Conferences 144 (2017) 01009]

UHECR 2024

AUGEF

Hybrid detection at the Pierre Auger Observatory

distance to axis [m]

J. Vícha (FZU): Overview of hadronic interaction studies at the Pierre Auger Observatory

UHECR 2024

Motivations for modifications of MC predictions

Properties of 4-component shower universality: 850

[Astropart. Phys. 87 (2017) 23, Astropart. Phys. 88 (2017) 46]

- S(1000) = S_{had} + S_{em}
- S_{em} very universal
- Main differences between model predictions:
 - Scale of (X_{max}) and (S_{had})(θ) are approx. primary and energy independent

Caveat: no modifications in fluctuations or mass-depencies etc. considered

ad-hoc modifications

$$X_{max} \rightarrow X_{max} + \Delta X_{max}$$

 $S_{had}(\theta) \rightarrow S_{had}(\theta) \cdot R_{had}(\theta)$

Effect of modified X_{max} **on the ground signal**

UHECR 2024

Assumption on primary species

• ΔX_{max} decreases by about 5-7, 10-17 and 30-40 g/cm² and $R_{had}(\theta)$ increases by about 2-5%, 4-9% and 15-20% when the heaviest primary Fe is replaced by Si, O and He, respectively

$\ln \mathscr{L}_{\min}$	EPOS-LHC	QGSJET-II-04	SIBYLL 2.3d
p He	518.3	633.5	563.5
p He O	467.5	523.3	486.6
p He O Fe	451.9	476.3	451.6

Significance of improvement of data description above 5σ

Systematic uncertainties

UHECR 2024

J. Vícha (FZU): Overview of hadronic interaction studies at the Pierre Auger Observatory

36/25

MC-MC tests

UHECR 2024

Adding muons ~ without changing X_{max}

Core-corona model - collective statistical hadronization → EPOS 4

Sibyll * - artificial enhancement of muons

UHECR 2024

Possible mass-(in)dependence of X_{max} shift

"changing the normalization of energy dependence" \rightarrow mass independent modifications

multiplicity: $N \propto N_0 \cdot E^{\alpha}$ inelasticity: $\kappa \propto \kappa_0 \cdot E^{-\omega}$

$$X_{\max}^{A} = X_{1}^{A} + X_{0} \ln \frac{\kappa E}{A \cdot 2N\xi_{c}^{\pi}} =$$

$$X_{1}^{A} + (1 - \alpha - \omega) \cdot (X_{0} \ln \frac{E}{A \cdot \xi_{c}^{\pi}}) + X_{0} \cdot (\ln \kappa_{0} - \ln N_{0})$$

$$\stackrel{\kappa_{0} \rightarrow f_{\kappa} \kappa_{0}}{N_{0} \rightarrow f_{N} N_{0}} \Rightarrow \qquad X_{\max}^{A} = X_{\max}^{A} + X_{0} (\ln(f_{\kappa}) - \ln(f_{N}))$$

[PoS(ICRC2023)245]

MOCHI (preliminary)

"changing the shape of energy dependence" \rightarrow mass-dependent modifications

J. Vícha (FZU): Overview of hadronic interaction studies at the Pierre Auger Observatory

40/25

Modifications of hadronic interactions

- 1D CONEX simulations
- Sibyll 2.1 @ 10^{19.5} eV
- Cross-section modification, or resampling of produced particles
- Energy threshold for modifications 10¹⁵ eV

UHECR 2024

Towards more complex explanation: MOCHI

MOdified Characteristics of Hadronic Interactions

- CONEX in CORSIKA: 3D information
- Modification factors in cross-section, multiplicity and elasticity

- MOCHI library:
 - Sibyll 2.3d
 - energy 10^{18.7} eV
 - protons and iron nuclei
 - 5 zenith angles
 - 1000 showers per "bin"
 - 750 000 showers (~200 TB, ~250y CPU time)

UHECR 2024

J. Vícha (FZU): Overview of hadronic interaction studies at the Pierre Auger Observatory

See [PoS(ICRC2023)245] for more detail

Range of modifications and thresholds

Cross-section ($E_{thr} = 10^{16} \text{ eV}$)

well constrained for p-p at LHC to a few %
unc. in conversion to p-A limited by CMS p-Pb measurement

Multiplicity ($E_{thr} = 10^{15} \text{ eV}$)

- no p-A data, limited rapidity coverage

Elasticity ($E_{thr} = 10^{14} \text{ eV}$)

- difficult at accelerators, limits from nuclear emulsion chambers

- recent LHCf neutron elasticity measurement?
- range of modifications limited by internal consistency

$$f(E, f_{19}) = 1 + (f_{19} - 1) \cdot \frac{\log_{10}(E/E_{\text{thr}})}{\log_{10}(10 \text{ EeV}/E_{\text{thr}})}$$

UHECR 2024

Importance of 3D simulation

UHECR 2024

Comparison with Auger results

UHECR 2024

Effect on tail of X_{max} distribution

UHECR 2024

Effect on X_{max} fluctuations

UHECR 2024

J. Vícha (FZU): Overview of hadronic interaction studies at the Pierre Auger Observatory

47/25