Calibration methods for the Surface **Scintillator Detector of AugerPrime**

Paul Filip^a for the Pierre Auger Collaboration^b

^a Karlsruhe Institute of Technology, Institute for Astroparticle Physics, Germany ^b Observatorio Pierre Auger, Av. San Martin Norte 304, 5613 Malargue, Argentina

The Pierre Auger Observatory

Surface Detector [1]

- ~1660 surface detector stations
- daily autonomous operation
- Detect shower footprint on earth
- Multiple detection channels
- Cross-calibration via the FD

Surface Scintillator Detector

SD detector upgrade [3]

- 120 MHz sampling (was 40 MHz)
- 12-bit electronics (was 10-bit)
- Hardware: sPMT, Rd, UMD, **SSD**
- Better sensitivity to primary mass

OBSERVATORY

Fluorescence Detector [2]

- 27 Fluorescence telescopes
- Dedicated measurement shifts
- Observe longitudinal shower profile
- Sensitive to UV light from showers

• See talk by D. Schmidt!

Surface Scintillator Detector (SSD)

- Extruded polystyrene scintillator bars atop tank
- Signal readout via WLS fibers & PMT
- Very sensitive to EM component of shower
- Operated in slave mode to water tank (now)
- Dynamic range of 1 to 10 000 particles

Calib. motivation & Idea

- (uncalibrated) SSD response fluctuates w/ environment
- Defines common ground during event reconstruction
- Enables monitoring + quantification of detector changes
- Allows use of SSD in trigger algorithms
- Use atmospheric muon signals to calibrate detector

Histogram-based [4]

Building muon histograms

- Collect signals with >30 ADC in WCD
- Calculate max. pulse height (peak) and integral (charge) for each signal
- Log distribution of peaks and charges
- Restart process after set period of time

• Have sharp muon energy distribution, and good statistics

Rate-based

- Measure raw pulse spectrum of SSD events >70 ADC
- Find (calibrated) rate-threshold relationship is the same for different stations, times of day, temperature, etc.

- Build calibration trigger with predefined target trigger rate
- Change calibration trigger thresholds until rate converges
- Read off MIP peak from rate-threshold relationship

max. pulse height / ADC

Fitting the muon hump

- Muons have characteristic energy deposit
- Visible in distribution of peak and charge
- Fit parabola to peak/charge distribution
- MIP given as vertex of parabola
- Statistical error of ~1% on fit result

Vertical vs. Omnidirectional MIP

- Deposited signal (~ track length in SSD) dependent on arrival direction
- Have superposition of all arrival directions, omnidirectional MIP
- Determine conversion factor via coinc. measurements @ Gianni Navarra
- Define common ground between simulations and measurements

• Need further testing/checks before final implementation

