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Shortend abstract

To analyze the complex spatio-temporal data from air shower footprints detected by the Pierre Auger Observatory, machine learning-
based algorithms are used to complement traditional methods. These algorithms help extract mass-sensitive observables, such as the
number of secondary muons and the (atmospheric) depth of the shower maximum, from the surface detectors, improving the precision of
UHECR mass estimates with an uptime of nearly 100%. The machine learning-based analyses perform exceptionally well in simulations
and show, after calibration, excellent results when applied to measurements.

Surface detector arrays (SDs) of the Pierre Auger Observatory

&WCD SSD

you are here!

1660 water-Cherenkov detectors
(WCD) with nearly 100% uptime

upgrade AugerPrime: new surface
scintillator detectors (SSD)

Spatio-temporal information contained in the shower footprint
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Direct comparison to classical reconstruction: energy estimation [1]
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Indirect measurement of shower depth of shower maximum [2] 18
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FIG. 11: Energy evolution of (a) the average depth of shower maximum ⟨Xmax⟩ and (b) the fluctuations of the shower maximum σ(Xmax) as
determined using the FD reconstruction [62] (grey open squares) and the DNN Xmax predictions (black circles). Red (blue) lines indicate
expectations for a pure proton (iron) composition for various hadronic models.

energy, also reported in previous SD-based studies using the
risetime of signals in the WCDs [21].

The elongation rate D10 is defined by the change of ⟨Xmax⟩
per decade of energy

D10 =
d⟨Xmax⟩

dlog10(E)
= D̂10

(
1− d⟨lnA⟩

dln(E)

)
,

where A denotes the primary particle mass. When measur-
ing D10, a deviation from the elongation rate D̂10, which is in
a very good approximation, universal across all hadronic in-
teraction models and primary nuclei, can be traced back to a
change in the primary mass composition. The elongation rate
obtained using the SD over the whole energy range amounts
to D10 = (24.1 ± 1.2) gcm−2 decade−1 in good agreement
with the FD result

(
(26±2) gcm−2

)
[62]. However, the re-

duced χ2/ndf = 46.7/13 obtained for the SD data indicates
that another substructure exists, as will be comprehensively
discussed in the next Section IV A.

The evolution in σ(Xmax), sensitive to the composition mix-
ing, is shown in Fig. 11b. We find a decrease of σ(Xmax) as
a function of energy and a very good agreement between the
measurements of the SD and the FD. This confirms for the
first time the transition from a lighter and mixed composition
into a heavier and purer composition with large statistics. At
the highest, previously inaccessible energies (> 50 EeV), the
fluctuations appear to stabilize and remain small. However,
more statistics are needed to examine the composition evolu-
tion at these energies in more detail. Given the limited dif-
ferences in the interaction model predictions of σ(Xmax), the
small fluctuations in Xmax beyond 30 EeV clearly exclude a

scenario with a substantial fraction of protons and light nuclei
in the UHECR composition. Additionally, at around 10 EeV,
the fluctuations appear to stay constant.

A. Discussion of breaks in the elongation rate

The observation of an elongation rate similar to the FD
but obtained using the comprehensive SD data set that fea-
tures χ2/ndf ≈ 3.6, indicates that a simple linear model is not
describing the data well (see Fig. 12a), suggesting the exis-
tence of a substructure to be analyzed. The measurement of
σ(Xmax) also shows a non-continuous decrease of fluctuations
with energy.

In Fig. 12, we study the evolution in the UHECR mass com-
position using different models. We analyze the evolution us-
ing broken-line fits with a different number of breaks. The
simplest model beyond a constant elongation rate is a broken-
line fit with one fitted break point shown in Fig. 12b that also
cannot describe our data reasonably (χ2/ndf ≈ 3.4). Con-
sidering Wilks’ theorem, we compared the χ2 values of two
nested models, in which the model of a constant elongation
rate is used as the null hypothesis and test if it can be rejected
with more complex models. A model with two breaks in the
elongation rate can reject the constant elongation rate hypoth-
esis at a significance of 3.4σ (see Fig. 12c). In Fig. 12d, we
show a model with three breaks in the elongation rate, where
the slopes and the break position were determined by a fit.
This model can reject the hypothesis of a constant elongation
rate at a level of 4.6σ and a single-break model at a level of

LSTMs to extract features from
time traces sharing weights for all
traces
hexagonal group convolutions to
analyze spatial information taking
SD symmetry into account

predictions of shower depth of the
shower maximum Xmax calibrated
with FD-SD events
NN predictions reproduce 1ˢᵗ and
2ⁿᵈ moment of Xmax (measured by
FD) extending the energy range
due to higher SD statistics

Prospects of AugerPrime
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Figure 2: 𝑅𝜇 and 𝑋max reconstruction on test dataset not used for training. (Left) DNN using WCD time
traces with UB. (Center) DNN using WCD and SSD time traces with UUB. (Right) Improvement in relative
resolution when comparing WCD+SSD (UUB) to WCD (UB).
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Figure 3: Distribution of 𝑌 for proton and iron constructed from DNN outputs. A cut at the dashed line
results in a classification accuracy of 90%.

mean and standard deviations to avoid a dependence on the specific test set. The distribution of 𝑌
for the proton and iron showers of the test set is shown in Fig. 3. The distributions of 𝑌 show strong
mass separation with two peaks that feature only a small overlap. Performing a classification via
a simple cut on 𝑌 as indicated by the dashed line and shaded areas in Fig. 3, 90% (87%) of the
proton and iron showers of the test set are correctly classified as such by the WCD+SSD (WCD UB)
DNN. The reliable identification of proton-induced air showers is a particularly relevant task when
studying the cosmic-ray mass composition. This can be achieved by a high proton identification
efficiency with as little misclassified iron showers as possible. To judge the ability of the DNNs, a
𝑌 cut is determined that results in a high proton identification efficiency of 80%. The probability of
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Figure 2: 𝑅𝜇 and 𝑋max reconstruction on test dataset not used for training. (Left) DNN using WCD time
traces with UB. (Center) DNN using WCD and SSD time traces with UUB. (Right) Improvement in relative
resolution when comparing WCD+SSD (UUB) to WCD (UB).
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Figure 3: Distribution of 𝑌 for proton and iron constructed from DNN outputs. A cut at the dashed line
results in a classification accuracy of 90%.

mean and standard deviations to avoid a dependence on the specific test set. The distribution of 𝑌
for the proton and iron showers of the test set is shown in Fig. 3. The distributions of 𝑌 show strong
mass separation with two peaks that feature only a small overlap. Performing a classification via
a simple cut on 𝑌 as indicated by the dashed line and shaded areas in Fig. 3, 90% (87%) of the
proton and iron showers of the test set are correctly classified as such by the WCD+SSD (WCD UB)
DNN. The reliable identification of proton-induced air showers is a particularly relevant task when
studying the cosmic-ray mass composition. This can be achieved by a high proton identification
efficiency with as little misclassified iron showers as possible. To judge the ability of the DNNs, a
𝑌 cut is determined that results in a high proton identification efficiency of 80%. The probability of
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number of muons normalized to expected
number of muons of protons Rμ is
proportional to mass of primary
proof of concept: Transfomers and
CNNs/RNNs trained on detector
simulations of AugerPrime (WCD, SSD) to
predict Rμ and Xmax
the information from the improved
sampling rate and additional traces of the
SSD improve the prediction of these
mass-sensitive observables

⇒ the mass separation also improves

Many studies on potential use cases...7. Estimation of the muon trace with the recurrent neural networks ..............
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Figure 7.29: Example of predicted muon trace.
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Figure 7.30: Example of predicted muon trace.
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μ-component from WCD (RNN)

[5]

80

Figure 8.15.: Resulting T3 efficiency of the best performing LSTM with charge cut
𝑡𝑆 = 0.5 VEMCh., compared to classical T3 efficiency of the current triggers operating
with thresholds that yield the same random-trace trigger frequency. With a higher
overall T3 efficiency, the LSTM trigger clearly shows a higher signal to noise ratio.

Figure 8.16.: Absolute deviation of true positive rate between original layer ordering
([1, 2, 3]) and the five possible permutated architectures ([1, 3, 2], [3, 1, 2], ...). No
clear improvement/regression of performance is noted with respect to any shower
variable. Peak deviations are on a sub-percent level.

Triggers based on small and fast NNs

[7]

8.1. Neural Networks Compared to the Direct Energy Calibration

30◦ ≤ θrec < 60◦ ViT (best network)
sepConv2D (best network)
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18.5≤ lg(EMC/eV)< 19.75
17.06◦ ≤ θrec < 65.10◦

18.5≤ lg(EMC/eV)< 19.75
17.06◦ ≤ θrec < 65.10◦

Figure 8.1.: Bias (left) and resolution (right) of the logarithmic energy as a function
of lg(𝑬MC/eV), sin2 𝜽MC, and sin2 𝜽rec. The gray bars in the first and last row
of plots show the edges of the calibration interval of the DEC method and the
red bands in the last plot shows the region where the fitted 𝑓att is non-physical.
Uncertainties of the bias are calculated as the standard error on the mean.
The uncertainties of the resolution represent a two-sided 68.27 % confidence
interval, determined via bootstrapping.
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energy from γ-induced shower (Transformer)

[6]

γ identification (GNN)

[8, details in a poster at this venue]
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