Search for neutrons from Galactic sources with the Pierre Auger Observatory

Miguel Alexandre Martins^a, for the Pierre Auger Collaboration

^aInstituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela

NEUTRONS

Neutrons can be produced in UHECR interactions near their sources Neutrons decay after travelling a mean free path:

9.2 kpc x (E / EeV)

→ Use them to investigate galactic sources!

DETECTION TECHNIQUE

Showers induced by neutrons are indistinguishable from proton-induced ones Neutrons are not deflected during propagation \Rightarrow look for excesses around the candidate source position, at scale of angular resolution of the Observatory

15

Energy r

1 EeV - 2 EeV

Given source position, assign weight to each event i based on: 1. Angular distance to source: ξ_i 2. Angular resolution: σ_i

$$v_i = rac{1}{2\pi\sigma_i^2} \exp\left(-rac{\xi_i^2}{2\sigma_i^2}
ight)$$

Compute the cosmic ray density at target's position and compare with density expected from 10 000 isotropic simulations

 $= \sum_{i=0}^{N} w_i$

ANGULAR RESOLUTION

Parametrize angular resolution based on: zenith angle and on the number of stations used reconstruction

500 m array data set

DAT	DATA SETS		
00 m array data set	750 m a		
vents above 1 EeV	Events a		
-90° ≤ dec ≤ 45°	-90° ≤		
ange no. Events	Energy range		

2,011,357

750 m array data set Events above 0.1 EeV $-90^{\circ} \le dec \le 20^{\circ}$

Energy range	no. Events		
0.1 EeV – 0.2 EeV	1,088,012		

TARGET SETS

Selected 12 target sets ⇒888 sources with dec < 45° 122 sources at distance < 1 kpc and dec < 20° ⇒ can be used with data from 750 m surface detector array

- Millisecond pulsars
- γ-ray pulsars
- Low mass x-ray binaries
- High mass x-ray binaries
- γ TeV emitters: pulsar wind nebulae
- γ TeV emitters: other
- γ-ray TeV emitters: unidentified
- Microquasars
- Magnetars
- LHAASO PeVatrons
- Crab Nebula
- Galactic center

≥ 1 EeV	2,661,606	≥ 0.1 EeV	1,505,412	
≥ 3 EeV	267,440	≥ 0.3 EeV	167,758	
2 EeV – 3 EeV	382,809	0.2 EeV – 0.3 EeV	249,642	

RESULTS

Results for the most significant source in each target set E-Flux Upper Limit computed assuming E⁻² spectrum

	RA	Dec	p-value	penalized	flux UL	E-flux UL
E>1 EeV	[deg]	[deg]		p-value	[km ⁻² yr ⁻¹]	[eV cm ⁻² s ⁻¹]
msec pulsar	286.2	2.1	0.008	0.88	0.026	0.19
y-ray pulsar	296.6	-54.0	5E-05	0.013	0.023	0.17
LMXB	237.0	-62.6	0.007	0.51	0.017	0.12
НМХВ	308.1	41.0	0.014	0.57	0.133	0.97
Hess PWN	128.7	<mark>-45.6</mark>	0.007	0.18	0.016	0.12
Hess other	128.8	-45.2	0.022	0.63	0.014	0.11
Hess Unid.	305.0	40.8	0.007	0.31	0.145	1.06
Microquasars	308.1	41.0	0.014	0.19	0.131	0.95
Magnetars	249.0	-47.6	0.154	0.99	0.011	0.08
LHAASO	292.3	17.8	0.024	0.20	0.038	0.28
Crab	83.6	22.0	0.708	0.71	0.020	0.15
Galactic Center	266.4	-29.0	0.862	0.86	0.005	0.04
	RA	Dec	p-value	penalized	flux UL	E-flux UL
E>0.1 EeV	[deg]	[deg]		p-value	[km ⁻² yr ⁻¹]	[eV cm ⁻² s ⁻¹]
msec pulsar	140.5	-52.0	0.043	0.66	1.71	12.5
gamma ray pulsar	284.4	1.7	0.056	1.00	2.67	19.5
НМХВ	116.8	-53.3	0.009	0.07	2.06	15.1
Hess PWN	277.9	-9.9	0.122	0.48	1.84	13.4
Hess other	288.2	10.2	0.003	0.04	5.50	40.2
Magnetars	274.7	-16.0	0.134	0.44	1.62	11.8

CONCLUSIONS

1. NO significant excess from any individual source

2. Performed combined analysis by multiplying p-values of all sources in each target set, weighting each source by their flux and distance \Rightarrow NO significant excess found!

3. Placed important and unique upper limits on purely hadronic emission of galactic sources at the highest energies

Take aways:

NO significant excess found for any source! Most significant target: γ-ray pulsar J1946-5403