MULTI-MESSENGER INSIGHTS INTO ULTRA-HIGH-ENERGY COSMIC RAYS FROM FRO RADIO GALAXIES: EMISSION SPECTRUM, COMPOSITION, AND SECONDARY PHOTONS AND NEUTRINOS

Jon Paul Lundquist jplundquist@gmail.com

7th International Symposium on Ultra High Energy Cosmic Rays (UHECR) 2024 17–21 Nov 2024, Malargüe, Mendoza, Argentina

www.ung.si/en/research/cac/

"Combined Fit of Spectrum and Composition for FRO Radio Galaxy Emitted Ultra-High-Energy Cosmic Rays with Resulting Secondary Photons and Neutrinos" arXiv:2407.06961 Accepted for Publication in ApJ

Jon Paul Lundquist¹, Serguei Vorobiov¹, Lukas Merten², Anita Reimer², Margot Boughelilba², Paolo Da Vela², Fabrizio Tavecchio³, Giacomo Bonnoli³, Chiara Righi³

¹Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia ²Institute for Astro and Particle Physics, University of Innsbruck, Innsbruck, Austria ³Astronomical Observatory of Brera, Milano, Italy

ABSTRACT SUMMARY

- Low luminosity Fanaroff-Riley Type 0 (FR0) radio galaxies can be significant UHECR flux contributors[1].
 FR0 outnumber more powerful FR radio galaxies by ~5× (z<0.05).
- This comprehensive CRPropa3 simulation study estimates FR0 emitted UHECR mass composition and energy spectra.
 - Integrates FR0 properties[2] and intergalactic magnetic fields (random and structured).
- Fitting spectral indices, rigidity cutoffs, and elemental fractions to Pierre Auger Observatory's spectrum and composition, probes the FR0 source contribution.
- Secondary photon and neutrino fluxes from cosmic photon background interactions are compared with current upper limits and theoretical models.
- This multi-messenger approach provides insights into the role of FR0 within the UHECR landscape.

Merten, L. et al., Scrutinizing FR 0 radio galaxies as ultra-high-energy cosmic ray source candidates, Astropart. Phys. 128 (2021) 102564.
 Baldi, R. D. et al., FROCAT: a FIRST catalog of FR 0 radio galaxies, A&A 609 (2018) A1.

CONSTANT FRACTION FIT

MODELS AND COMBINED FIT - CONSTANT FRACTION

Tables in appendix

- Three EAS Models: SIBYLL2.3c, EPOS-LHC and QGSJETII-04
- Two Structured Fields:
 - Dolag et al. <u>arXiv:0410419</u>
 - CLUES -- Hackenstein et al. (Astro_1B): <u>arXiv:1710.01353</u>
- Two 1 nG Random Fields:

• A:
$$\langle l_{\rm corr} \rangle = 234$$
 kpc, B: $\langle l_{\rm corr} \rangle = 647$ kpc

And No Magnetic Field

Minimize $\sum \chi_{tot}^2/dof = \sum \chi_E^2/dof_E + \sum \chi_C^2/dof_C$

8 Parameters

- Power Law: γ
- Spectrum Normalization: *n*
- Rigidity-Dependent Exponential Cutoff: ZR_{cut}
 - **5 nuclei fit:** H, He, N, Si, Fe
 - $\sum f_a = 100\% \rightarrow 4$ parameters
- Maximum Trajectory D

Constant Nuclei Fractions: f_A

۲

• Rigidity Dependent Cutoff: *ZR*_{cut}

Auger JCAP (2017) arXiv:1612.07155

ENERGY SPECTRUM AND (InA) FITS

Data from: Deligny, O. et al., *PoS* ICRC2019 (2020) 234 Yushkov, A. et al., *PoS* ICRC2019 (2020) 482

ullet

- Energy spectra for 10 models.
 - Highest energies are not well fit.
 - FR0 not expected as a significant contributor.
 - Contribution from other sources? SGBs? (Abdul Halim et al. 2024)
- (InA) for 10 models.
 Largest residuals: First and last energy bin.

FIT PARAMETER RESULTS VS MAGNETIC FIELD

Power law Spectral Index γ

Error bars: 1 Gaussian σ C.I. around best fit for bootstrapped sims & Gaussian sampled data.

Trajectory cutoff *D_{cut}*

Rigidity cutoff R_{cut}

Spectrum Normalization

EMITTED NUCLEI FRACTIONS

Combined Light Nuclei							
	0.1/						
Field	Model	$f_{H}(\%) + f_{He}(\%)$					
No Field	SIBYLL	$88.7^{+0.2}_{-24.0}$					
no riela	EPOS	$93.4_{-7.2}^{+0.7}$					
	QGS4	$97.6^{+0.3}_{-1.1}$					
Dolag	SIBYLL	$84.3^{+5.2}_{-11.9}$					
Dolag	EPOS	$90.8^{+3.7}_{-3.8}$					
	QGS4	$97.1^{+0.4}_{-1.0}$					
CLUES	SIBYLL	$91.8^{+0.3}_{-11.4}$					
OLOED	EPOS	$94.4_{-4.4}^{+0.4}$					
	QGS4	$97.4_{-0.5}^{+0.4}$					
Dond A	SIBYLL	$69.3^{+11.1}_{-19.2}$					
nand.A	EPOS	$87.6^{+5.6}_{-4.2}$					
	QGS4	$98.9^{+0.0}_{-3.5}$					
Rand B	SIBYLL	$58.4^{+10.5}_{-23.6}$					
Tond.D	EPOS	$79.5^{+5.8}_{-6.5}$					
	QGS4	$95.8^{+1.7}_{-4.5}$					

Emitted Nuclei Fraction Versus Magnetic Field

PHOTONS - (CLUES-SIBYLL CONFIGURATION

CLUES-SIBYLL

"A Search for Photons with Energies Above 2×10^17 eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory" P. Abreu et al 2022 ApJ 933 125 arXiv:2205.14864

Integral photon flux for 10 models

NEUTRINOS – (CLUES-SIBYLL CONFIGURATION

CLUES-SIBYLL

Kotera et al: JCAP (2010) <u>arXiv:1009.1382</u> Ahlers et al: Astropart.Phys.(2010) <u>arXiv:1005.2620v2</u> IceCube: Phys.Rev.D(2018) <u>arXiv:1807.01820v2</u> Auger: JCAP10 (2019) <u>arXiv:1906.07422v2</u>

Neutrino flux for 10 models

CONSTANT FRACTION CONCLUSIONS

Best Fit: CLUES Structured Field with SIBYLL EAS model.

- Next best: CLUES structured field with EPOS EAS model.
- Generally EPOS is the best fit third: Rand.A-EPOS, fourth: Rand.B-EPOS

General trends with increasing magnetic field strength:

- Small increase: γ
- Small decrease: *R_{cut}*
- Increases: Helium and Nitrogen emission.
- Decreases: Proton, Silicon, and Iron emission.
- Small decrease: Proton+Helium emission.

Very good fits for CLUES and 1 nG fields with EPOS -- still may require another source type at highest energies.

Photon spectra: higher flux than expected for mixed composition from GZK only.

- Flux increases with magnetic fields at highest energies.
- Below experimental limits.

Neutrino spectra: lower flux than expected from Kotera model for mixed composition.

- Flux generally increases with magnetic fields at highest energies.
- Below experimental limits

EVOLVING FRACTION FIT

COMBINED FIT – EVOLVING FRACTIONS

• Two EAS Models: SIBYLL2.3c, EPOS-LHC

- Two Structured Fields:
 - Dolag et al. <u>arXiv:0410419</u>
 - CLUES -- Hackenstein et al. (Astro_1B): <u>arXiv:1710.01353</u>
- Two 1 nG Random Fields:
 - A: $\langle l_{\rm corr} \rangle = 234$ kpc, B: $\langle l_{\rm corr} \rangle = 647$ kpc
- And No Magnetic Field

Minimize:
$$\sum \chi_{tot}^2 / dof = \sum \chi_E^2 / dof_E + \sum \chi_C^2 / dof_C$$

= $\sum \chi_E^2 / 16 + \sum \chi_C^2 / 11$

16 energy and 11 composition bins

• 48 Parameters

- Power Law: γ
- Spectrum Normalization: *n*
- Rigidity-Dependent Exponential Cutoff: ZR_{cut}
 - **5 nuclei fit:** H, He, N, Si, Fe
 - $\sum f_a(E) = 100\% \rightarrow 44$ parameters
- Maximum Trajectory D

ENERGY SPECTRUM AND (InA) FITS

Data from: Deligny, O. et al., *PoS* ICRC2019 (2020) 234 Yushkov, A. et al., *PoS* ICRC2019 (2020) 482

• FR0 perhaps not expected as a significant contributor.

• $\langle \ln A \rangle$ for all models.

Very good fit. (44 parameters...)

MEAN LOG MASS < InA> FITS (EVOLVING FRACTIONS)

Data From: Yushkov, A. et al., Mass Composition of Cosmic Rays with Energies above 10^{17.2} eV from the Hybrid Data of the Pierre Auger Observatory, *PoS* ICRC2019 (2020) 482

FIT PARAMETER RESULTS VS MAGNETIC FIELD

Goodness-of-fit

Error bars: 1 Gaussian σ C.I. around best fit for bootstrapped sims & Gaussian sampled data.

21.5 () 21.0 E No Field (EPOS) No Field (SIBYLL) Dolag (EPOS) Dolag (SIBYLL) CLUES (EPOS) 19.5 CLUES (SIBYLL) Rand. A (EPOS) Rand. A (SIBYLL) 2 19.5 19.0 19.0 Rand. B (EPOS) 🔶 Rand. B (SIBYLL) 18.5 0.0 0.2 0.4 0.6 0.8 1.0 |B|/nG

Rigidity cutoff R_{cut}

Spectrum Normalization

EVOLVING NUCLEI FRACTIONS (EMITTED)

Emitted Nuclei Fraction Versus Magnetic Field

PHOTONS -- (RAND.B-SIBYLL CONFIGURATION

RAND.B-SIBYLL

"A Search for Photons with Energies Above 2×10^17 eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory" P. Abreu et al 2022 ApJ 933 125 arXiv:2205.14864

Integral photon flux for all models

20

NEUTRINOS – (RAND.B–SIBYLL CONFIGURATION

RAND.B-SIBYLL

Kotera et al: JCAP (2010) <u>arXiv:1009.1382</u> Ahlers et al: Astropart.Phys.(2010) <u>arXiv:1005.2620v2</u> IceCube: Phys.Rev.D(2018) <u>arXiv:1807.01820v2</u> Auger: JCAP10 (2019) <u>arXiv:1906.07422v2</u>

10-8 ⁻²sr⁻¹s⁻¹] 10-9 10-10 [GeV cm 10-11 EPOS SIBYLL **10**⁻¹² Model Range J_v(E)*E² No Field (EPOS) **CLUES (SIBYLL) 10**⁻¹³ No Field (SIBYLL) Rand. A (EPOS) Dolag (EPOS) Rand. A (SIBYLL) 10-14 Dolag (SIBYLL) Rand. B (EPOS) CLUES (EPOS) Rand. B (SIBYLL) • 10-15 16 17 19 20 15 18 $\log_{10}(E_v/eV)$

Neutrino flux for all models

EVOLVING FRACTION CONCLUSIONS

Best Fit: Rand.B 1 nG ($\langle l_{corr} \rangle = 647$ kpc) with SIBYLL EAS model.

- Next best: Rand.B field with EPOS EAS model.
- Generally EPOS is the best fit third: CLUES-EPOS, fourth: CLUES-SIBYLL

General trends with increasing magnetic field strength:

- Increases: γ
- Rather stable: *R_{cut}*

General trends with increasing energy:

- Increases: Proton emission.
- Rather stable: Light emission.
- Decreases: Heavy emission.

Photon spectra: consistent with mixed composition from GZK only ($E > \sim 10^{17}$).

- Flux increases with magnetic fields.
- Below experimental limits.

Neutrino spectra: lower flux than expected from Kotera model for mixed composition.

- Flux increases with magnetic fields.
- Below experimental limits.

Extremely good fits (high parameters) still may require another source type at highest energies.

APPENDIX

CONSTANT FRACTION ADDITIONAL

INTERGALACTIC PROPAGATION

CRPropa 3 used to simulate propagation of five nuclei (proton, helium, nitrogen, silicon, and iron) UHECR primaries through the intergalactic medium.

Interactions with the CMB, IRB, and URB include:

- Photo-pion production (GZK effect).
- Pair-production (including double and triple).
- Inverse Compton scattering.

General interactions include:

- Redshift adiabatic cooling.
- Nuclear decay.

Simulation Framework **CR**/Propa

http://crpropa.desy.de

Rafael Alves Batista^{a,b}, Julia Becker Tjus^c, Andrej Dundovic^a, Martin Erdmann^d, Christopher Heiter^d, Karl-Heinz Kampert^e, Daniel Kuempel^g, Lukas Merten^c, Gero Müller^d, Günter Sigl^a, Arjen van Vliet^{a,} David Walz^d, Tobias Winchen^{d,e,g}, Marcus Wirtz^d

RWTH Aachen University^a, Ruhr Universität Bochum^c, Vrije Universiteit Brussels^a, University Hamburg^a, Radboud University Nijmegen^t, University of Sao Paolo^a, Bergische Universität Wuppertal^a

Toolbox for Simulations of UHECR Propagation

ketch by Lukas Merte

http://vispa.physik.rwth-aachen.de

VARIANCE RESULTS

• Var(InA) for log10(E) from 18.6 to 19.0

- No field-Sibyll: 3.38 ± 0.04
- No field-EPOS: 3.36 ± 0.07
- No field-QGS4: 2.49 ± 0.12
- Dolag-Sibyll: 2.52 ± 0.06
- Dolag-EPOS: 2.21 ± 0.08
- Dolag-QGS4: 1.71 ± 0.06
- CLUES-Sibyll: 3.29 ± 0.06
- CLUES-EPOS: 2.66 ± 0.10
- CLUES-QGS4: 1.70 ± 0.09
- 1ng1mpc-Sibyll: 1.19 ± 0.04
- 1ng1mpc-EPOS: 1.16 ± 0.05
- 1ng1mpc-QGS4: 0.66 ± 0.04
- 1ng3mpc-Sibyll: 1.23 ± 0.02
- 1ng3mpc-EPOS: 1.22 ± 0.02
- 1ng3mpc-QGS4: 0.62 ± 0.01

Data for log10(E) from 18.5 to 19.0: 1.64 ± 0.92

Does not include muon uncertainty Yushkov, A. 2020, PoS, ICRC2019, 482

ADDING Var(InA)

- **EPOS-LHC** Var(lnA)
 - Negative variances not calculable.
 - Slope -0.29 +/- 0.30

- Not significant with uncertainties in A transform.
- Transforming A to X_{\max} transfers uncertainty to simulation.
- Adding more rigid constraint than $Var(lnA) \chi^2$:
 - Constrain simulation variance slope +/- 1σ .
 - χ^2 : 2.67 to 7.45
 - Gamma *γ*: 2.67 to 3.14
 - Rigidity cutoff: 37×10^{18} to 21×10^{18}
 - Trajectory cutoff: 424 Mpc to 225 Mpc
 - Observed nuclei fractions:
 - Proton: 34% to 52%
 - Helium: 27% to 0%
 - H+He: 61% to 52%
 - Nitrogen: 25% to 34%
 - Silicon: 6% to 8.3%
 - P Iron: 7% to 5.4%

• 1 nG 234 kpc magnetic field

Field	Model	$\Sigma \chi^2/dof$	γ	$\log_{10}(\mathrm{R_{cut}}/\mathrm{V})$	$D_{\rm cut}/{ m Mpc}$	n
No Field	SIBYLL	3.21	$2.51\substack{+0.02 \\ -0.67}$	$19.36\substack{+0.23\\-0.31}$	843^{+0}_{-1}	$1.337\substack{+0.016\\-0.003}$
No Field	EPOS	3.15	$2.50\substack{+0.02 \\ -0.16}$	$19.40\substack{+0.13\\-0.06}$	843^{+0}_{-0}	$1.337\substack{+0.011\\-0.004}$
	QGS4	3.47	$2.47\substack{+0.03 \\ -0.08}$	$19.43\substack{+0.10 \\ -0.03}$	843^{+0}_{-0}	$1.338\substack{+0.006\\-0.006}$
Dolag	SIBYLL	4.41	$2.29\substack{+0.06\\-0.79}$	$19.74\substack{+0.00\\-0.40}$	890^{+320}_{-41}	$1.341\substack{+0.008\\-0.008}$
Dolag	EPOS	4.74	$2.23\substack{+0.11 \\ -0.06}$	$19.75\substack{+0.03 \\ -0.29}$	889^{+230}_{-41}	$1.339\substack{+0.007\\-0.007}$
	QGS4	6.28	$2.23\substack{+0.08\\-0.09}$	$19.64\substack{+0.10 \\ -0.12}$	890^{+47}_{-42}	$1.335\substack{+0.005\\-0.008}$
CLUES	SIBYLL	1.76	$2.54\substack{+0.00\\-0.19}$	$19.45\substack{+0.50\\-0.12}$	842^{+0}_{-0}	$1.354\substack{+0.006\\-0.015}$
CLOES	EPOS	1.87	$2.43\substack{+0.06\\-0.13}$	$19.51\substack{+0.36 \\ -0.07}$	842^{+0}_{-1}	$1.347\substack{+0.006\\-0.011}$
	QGS4	3.10	$2.32\substack{+0.08\\-0.05}$	$19.56\substack{+0.08\\-0.07}$	841^{+1}_{-0}	$1.334\substack{+0.006\\-0.007}$
Rand A	SIBYLL	2.84	$2.40\substack{+0.07\\-0.11}$	$19.86\substack{+0.12\\-0.18}$	843^{+80}_{-0}	$1.342\substack{+0.007\\-0.005}$
Italiu.A	EPOS	2.15	$2.34\substack{+0.08\\-0.09}$	$19.69\substack{+0.19 \\ -0.08}$	843^{+76}_{-0}	$1.341\substack{+0.006\\-0.004}$
	QGS4	2.51	$2.23\substack{+0.07 \\ -0.07}$	$19.58\substack{+0.07 \\ -0.08}$	846^{+69}_{-0}	$1.341\substack{+0.005\\-0.006}$
Band B	SIBYLL	2.57	$2.47\substack{+0.04 \\ -0.16}$	$19.71\substack{+1.40 \\ -0.08}$	843^{+156}_{-0}	$1.346\substack{+0.009\\-0.006}$
T(and.D	EPOS	2.29	$2.33\substack{+0.09\\-0.15}$	$19.60\substack{+0.23\\-0.09}$	843^{+140}_{-0}	$1.346\substack{+0.005\\-0.006}$
	QGS4	2.60	$1.97\substack{+0.26\\-0.05}$	$19.52\substack{+0.08\\-0.07}$	854^{+66}_{-11}	$1.343\substack{+0.006\\-0.004}$

Table 1: The FR0 combined fit results total sum chi-square per degree of freedom, spectral index γ , exponential rigidity cutoff (log₁₀(R_{cut})), trajectory cutoff (D_{cut}), and spectrum normalization for all 15 models. The three extensive air-shower models are EPOS-LHC (EPOS), Sibyll2.3c (SIBYLL), and QGSJetII-04 (QGS4).

27

Field	Model	$f_H(\%) + f_{He}(\%)$	f _H (%)	$f_{He}(\%)$	f _N (%)	f _{Si} (%)	$f_{Fe}(\%)$
No Field	SIBYLL	$88.7^{+0.2}_{-24.0}$	$88.7^{+0.1}_{-88.7}$	$0.0^{+16.5}_{-0.0}$	$0.0\substack{+23.1\\-0.0}$	$6.1^{+6.8}_{-2.3}$	$5.2^{+2.0}_{-4.0}$
No Field	EPOS	$93.4^{+0.7}_{-7.2}$	$93.4\substack{+0.6 \\ -16.5}$	$0.0^{+12.1}_{-0.0}$	$0.0\substack{+5.8 \\ -0.0}$	$2.9^{+2.4}_{-1.8}$	$3.7^{+0.8}_{-0.8}$
	QGS4	$97.6^{+0.3}_{-1.1}$	$97.6\substack{+0.1\\-8.8}$	$0.0\substack{+7.8 \\ -0.0}$	$0.0\substack{+0.0\\-0.0}$	$0.2\substack{+1.2 \\ -0.2}$	$2.2\substack{+0.2 \\ -0.5}$
Dolag	SIBYLL	$84.3^{+5.2}_{-11.9}$	$0.0\substack{+85.6\-0.0}$	$84.3^{+0.0}_{-84.3}$	$0.0^{+16.6}_{-0.0}$	$2.5^{+10.5}_{-2.4}$	$13.2^{+0.0}_{-12.1}$
Dolag	EPOS	$90.8^{+3.7}_{-3.8}$	$0.0^{+87.9}_{-0.0}$	$90.8^{+0.0}_{-90.0}$	$0.0\substack{+0.0\\-0.0}$	$0.0\substack{+5.8 \\ -0.0}$	$9.2\substack{+0.0 \\ -5.2}$
	QGS4	$97.1^{+0.4}_{-1.0}$	$54.4^{+28.3}_{-35.4}$	$42.7^{+34.7}_{-28.4}$	$0.0\substack{+0.0\\-0.0}$	$0.0\substack{+0.0\\-0.0}$	$2.9\substack{+0.9 \\ -0.5}$
CLUES	SIBYLL	$91.8^{+0.3}_{-11.4}$	$74.5^{+8.5}_{-74.5}$	$17.3^{+66.2}_{-10.8}$	$0.0\substack{+0.0\\-0.0}$	$0.0^{+9.2}_{-0.0}$	$8.2^{+3.5}_{-1.8}$
CLUES	EPOS	$94.4^{+0.4}_{-4.4}$	$68.6\substack{+14.1 \\ -68.6}$	$25.8^{+64.4}_{-13.4}$	$0.0\substack{+0.0\\-0.0}$	$0.0\substack{+3.5\\-0.0}$	$5.6\substack{+2.5 \\ -0.9}$
	QGS4	$97.4_{-0.5}^{+0.4}$	$68.8^{+16.3}_{-15.8}$	$28.6^{+15.6}_{-16.1}$	$0.0\substack{+0.0\\-0.0}$	$0.0\substack{+0.0\\-0.0}$	$2.6^{+0.5}_{-0.4}$
Rand A	SIBYLL	$69.3^{+11.1}_{-19.2}$	$0.0\substack{+43.1\\-0.0}$	$69.3^{+8.3}_{-54.4}$	$24.5^{+19.2}_{-12.3}$	$1.3^{+3.0}_{-1.3}$	$4.9^{+1.0}_{-1.4}$
Italiu.A	EPOS	$87.6^{+5.6}_{-4.2}$	$38.0^{+23.3}_{-38.0}$	$49.6^{+34.2}_{-23.5}$	$9.5^{+3.5}_{-7.3}$	$0.3^{+1.8}_{-0.3}$	$2.6\substack{+0.9 \\ -0.5}$
	QGS4	$98.9^{+0.0}_{-3.5}$	$57.9^{+18.4}_{-12.1}$	$41.0^{+10.0}_{-20.7}$	$0.0^{+3.5}_{-0.0}$	$0.0^{+0.1}_{-0.0}$	$1.1^{+0.2}_{-0.2}$
Rand B	SIBYLL	$58.4^{+10.5}_{-23.6}$	$48.3^{+5.3}_{-48.3}$	$10.1^{+41.8}_{-10.1}$	$38.8^{+22.2}_{-13.4}$	$0.0\substack{+3.5\\-0.0}$	$2.8^{+1.6}_{-0.4}$
Ttand.D	EPOS	$79.5^{+5.8}_{-6.5}$	$57.7^{+20.2}_{-37.2}$	$21.8^{+34.9}_{-21.8}$	$18.2^{+5.8}_{-6.3}$	$0.7^{+1.9}_{-0.7}$	$1.6^{+0.7}_{-0.4}$
	QGS4	$95.8^{+1.7}_{-4.5}$	$45.6^{+41.0}_{-9.4}$	$50.2^{+9.0}_{-43.1}$	$2.2^{+5.1}_{-2.2}$	$0.9^{+0.6}_{-0.9}$	$1.1^{+0.2}_{-0.4}$

Table 3: The FR0 combined fit nuclei emission percentages for proton, helium, nitrogen, silicon, and iron primaries for all 15 models.

28

Field	Model	$\Sigma \chi^2/dof$	γ	$\log_{10}(R_{\rm cut}/V)$	$D_{\rm cut}/{\rm Mpc}$	n	
No Field	SIBYLL	3.21	$2.48 \substack{+0.27 \\ -0.27}$	$19.38\substack{+0.23\\-0.23}$	843^{+0}_{-0}	$1.341\substack{+0.006\\-0.006}$	
No Field	EPOS	3.15	$2.48^{+0.26}_{-0.26}$	$19.40^{+0.13}_{-0.13}$	843^{+0}_{-0}	$1.338\substack{+0.005\\-0.005}$	
	QGS4	3.47	$2.45^{+0.04}_{-0.04}$	$19.43^{+0.06}_{-0.06}$	843^{+0}_{-0}	$1.335^{+0.004}_{-0.004}$	
Dolog	SIBYLL	4.41	$2.07^{+0.23}_{-0.23}$	$19.04\substack{+0.57\\-0.57}$	871^{+126}_{-29}	$1.339\substack{+0.005\\-0.005}$	
Dotag	EPOS	4.74	$2.33^{+0.38}_{-0.38}$	$19.37\substack{+0.24\\-0.24}$	864^{+180}_{-22}	$1.334\substack{+0.004\\-0.004}$	
	QGS4	6.28	$2.24^{+0.37}_{-0.37}$	$19.64^{+0.07}_{-0.07}$	893^{+86}_{-51}	$1.335^{+0.004}_{-0.004}$	
CLUES	SIBYLL	1.76	$2.54_{-0.15}^{+0.15}$	$19.41\substack{+0.34\\-0.34}$	842^{+0}_{-0}	$1.352\substack{+0.007\\-0.007}$	
OLOES	EPOS	1.87	$2.41\substack{+0.07\\-0.07}$	$19.51\substack{+0.15\\-0.15}$	842^{+0}_{0}	$1.346\substack{+0.005\\-0.005}$	
	QGS4	3.10	$2.31^{+0.05}_{-0.05}$	$19.56\substack{+0.06\\-0.06}$	842^{+0}_{-0}	$1.337^{+0.004}_{-0.004}$	
Rand A	SIBYLL	2.84	$2.36\substack{+0.26\\-0.26}$	$19.87^{+1.66}_{-1.66}$	864^{+81}_{-22}	$1.343^{+0.001}_{-0.001}$	
hand.A	EPOS	2.15	$2.31^{+0.05}_{-0.05}$	$19.67^{+0.11}_{-0.11}$	853^{+36}_{-11}	$1.343^{+0.003}_{-0.003}$	
	QGS4	2.51	$2.25^{+0.07}_{-0.07}$	$19.59^{+0.08}_{-0.08}$	854^{+29}_{-12}	$1.342^{+0.004}_{-0.004}$	
Rand B	SIBYLL	2.57	$2.43^{+0.06}_{-0.06}$	$19.70^{+10.20}_{-10.20}$	852^{+53}_{-10}	$1.347\substack{+0.005\\-0.005}$	
nand.D	EPOS	2.29	$2.36^{+0.10}_{-0.10}$	$19.54^{+7.2}_{-7.2}$	854_{-12}^{+64}	$1.346\substack{+0.000\\-0.000}$	
	QGS4	2.60	$2.15\substack{+0.14\\-0.14}$	$19.45\substack{+0.62\\-0.62}$	848^{+48}_{-6}	$1.342\substack{+0.003\\-0.003}$	

Table 2. Constant Fraction Bootstrap Energy Spectrum Parameters

Notes. The FR0 constant fraction combined fit bootstrap distribution most probable spectral index γ , exponential rigidity cutoff (log₁₀(R_{cut}/V)), trajectory cutoff (D_{cut}), and spectrum normalization for all 15 configurations.

Table 4. Constant Fraction Bootstrap Composition Parameters									
Field	Model	$f_{H}(\%) + f_{He}(\%)$	f _H (%)	$f_{He}(\%)$	f _N (%)	$f_{Si}(\%)$	$f_{Fe}(\%)$		
No Field	SIBYLL	$86.3^{+13.7}_{-15.6}$	$85.6^{+14.4}_{-21.7}$	$0.6^{+15.2}_{-0.6}$	$2.8^{+15.8}_{-2.8}$	$5.6^{+3.1}_{-3.1}$	$5.4^{+2.3}_{-2.3}$		
	EPOS	$92.8^{+5.3}_{-5.3}$	$91.4^{+8.6}_{-13.2}$	$1.4^{+10.7}_{-1.4}$	$0.6\substack{+5.3\\-0.6}$	$2.9^{+1.5}_{-1.5}$	$3.7^{\pm 0.8}_{-0.8}$		
	QGS4	$97.6^{+0.8}_{-0.8}$	$96.4^{+3.6}_{-7.6}$	$1.2^{+7.4}_{-1.2}$	$0.0^{+0.8}_{-0.0}$	$0.2\substack{+0.5\\-0.2}$	$2.2\substack{+0.2\\-0.2}$		
Dolag	SIBYLL	$85.2^{+8.0}_{-8.0}$	$84.4 \substack{+15.6 \\ -22.6}$	$0.9^{+22.1}_{-0.9}$	$0.0^{+7.6}_{-0.0}$	$13.0^{+3.9}_{-3.9}$	$1.8^{+3.1}_{-1.8}$		
Dotag	EPOS	$94.8^{+4.9}_{-4.9}$	$84.5^{+15.5}_{-23.6}$	$10.3^{+22.4}_{-10.3}$	$0.1\substack{+4.7\\-0.1}$	$0.2\substack{+2.2\\-0.2}$	$4.9^{+1.7}_{-1.7}$		
	QGS4	$97.0^{+0.6}_{-0.6}$	$54.7^{+18.0}_{-18.0}$	$42.3^{+17.7}_{-17.7}$	$0.0^{+0.5}_{-0.0}$	$0.0^{+0.3}_{-0.0}$	$2.9\substack{+0.5\\-0.5}$		
CLUES	SIBYLL	$91.6^{+3.6}_{-3.6}$	$81.2^{+18.8}_{-23.3}$	$10.6^{+20.7}_{-10.6}$	$0.0^{+2.2}_{-0.0}$	$0.7^{+3.4}_{-0.7}$	$7.5^{+1.9}_{-1.9}$		
CLUED	EPOS	$94.2^{+1.8}_{-1.8}$	$66.7^{+21.8}_{-21.8}$	$27.6^{+20.5}_{-20.5}$	$0.0^{+0.5}_{-0.0}$	$0.2^{+1.6}_{-0.2}$	$5.5^{+1.0}_{-1.0}$		
	QGS4	$97.5^{+0.4}_{-0.4}$	$67.6^{+12.3}_{-12.3}$	$29.9^{+12.1}_{-12.1}$	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.2}_{-0.0}$	$2.5^{+0.3}_{-0.3}$		
Rand A	SIBYLL	$70.0^{+11.4}_{-11.4}$	$5.3^{\pm 14.7}_{-5.3}$	$63.9^{+17.5}_{-17.5}$	$25.1^{+11.8}_{-11.8}$	$0.7^{+1.5}_{-0.7}$	$5.0^{+0.9}_{-0.9}$		
nanu.A	EPOS	$87.6^{+4.6}_{-4.6}$	$36.2^{+15.9}_{-15.9}$	$51.5^{+16.0}_{-16.0}$	$9.5^{+4.9}_{-4.9}$	$0.2\substack{+0.8\\-0.2}$	$2.7\substack{+0.5\\-0.5}$		
	QGS4	$98.4^{+1.1}_{-1.1}$	$60.6^{+10.1}_{-10.1}$	$37.7^{+10.4}_{-10.4}$	$0.5^{+1.2}_{-0.5}$	$0.0^{+0.2}_{-0.0}$	$1.1^{\pm 0.2}_{-0.2}$		
Rand R	SIBYLL	$59.3^{+11.1}_{-11.1}$	$45.7^{+15.3}_{-15.3}$	$15.2^{+14.4}_{-14.4}$	$35.8^{+11.5}_{-11.5}$	$0.6\substack{+1.3\\-0.6}$	$2.7^{+0.6}_{-0.6}$		
nand.D	EPOS	$82.0^{+4.5}_{-4.5}$	$73.3^{+16.3}_{-16.3}$	$9.5^{+14.8}_{-9.5}$	$15.6\substack{+4.7\\-4.7}$	$0.2\substack{+1.0\\-0.2}$	$1.4^{\pm 0.4}_{-0.4}$		
	QGS4	$93.6^{+1.8}_{-1.8}$	$80.4^{+14.2}_{-14.2}$	$13.2^{+14.7}_{-13.2}$	$5.6^{+2.1}_{-2.1}$	$0.0^{+0.4}_{-0.0}$	$0.7^{\pm 0.2}_{-0.2}$		

Notes. The FR0 constant fraction combined fit bootstrap distribution most probable nuclei emission percentages for proton, helium, nitrogen, silicon, and iron primaries for all 15 configurations.

OBSERVED NUCLEI FRACTIONS

Observed Nuclei Fraction Versus Magnetic Field

SECONDARY RATIOS

- Emitted energy binned ratios of observed secondaries to emitted nuclei.
- Total ratios used to convert constant observed fractions to emitted fraction.

FRACTIONS EMITTED

Emitted fractions in E_0 ins for observed constant fraction

OBSERVED < InA>

CLUES (EPOS)

0.0 18.6

18.8

19.0

Rand. B (EPOS) Rand. B (SIBYLL) 19.2 19.4 19.6 19.8 20.0 log₁₀(E/eV) (Observed)

ENERGY SPECTRUM FITS

Energy Spectra Residuals for all models

EFFECT OF EXTENDING TO Z = 0.5

- 1 nG 234 kpc MAGNETIC FIELD

Extrapolating to FR0 sources *z* = 0.05 to 0.5:

- Proton ratio (detected)/(emitted nuclei) is ~1/24th that of z = 0 to 0.05.
 - Neutrinos (detected)/(emitted nuclei) is ~1/68th.
- Iron ratio is ~1/51th.
 - Neutrinos is ~1/26th.
- Results: small correction with significant computing penalty so we extended to z = 0.2

Local source evolution modeled by preserving correlation between radio output and redshift distance (Kendall's correlation coeff.: -0.28, p-Value: 4.6e-5)[1]. Simulated FR-0 redshift distribution from Pareto fit to catalog data[1]. Isotropy probability of ~16%.

- IRON: 1 nG 234 kpc MAGNETIC FIELD
 - Updated CRPropa 3
 - Extrapolating to FRO sources z = 0.05 up to 0.5 (simulate 0 to 0.5)

- Iron propagation does not change significantly past z = 0.1
- Up to z = 0.5 has too high computation cost.

Up to z = 0.5 (smaller stats)

- IRON: 1 nG 234 kpc MAGNETIC FIELD
 - Updated CRPropa 3
 - Extrapolating to FRO sources z = 0.05 up to 0.5 (simulate 0 to 0.5)

<u>Up to</u> z = 0.2

- Iron propagation does not change significantly past z = 0.1
- Up to z = 0.5 has too high computation cost.

log₁₀(E/eV)

Up to z = 0.5 (smaller stats)

- IRON EMITTED NEUTRINOS: 1 nG 234 kpc MAGNETIC FIELD
 - Updated CRPropa 3
 - Extrapolating to FRO sources z = 0.05 up to 0.5 (simulate 0 to 0.5)

Up <u>to z = 0.1</u>

Up to z = 0.2

- Iron propagation does not change significantly past z = 0.1
- Up to z = 0.5 has too high computation cost.

Up to z = 0.5 (smaller stats)

- IRON EMITTED NEUTRINOS: 1 nG 234 kpc MAGNETIC FIELD
 - **Updated CRPropa 3** ullet
 - Extrapolating to FR0 sources z = 0.05 up to 0.5 (simulate 0 to 0.5) \bullet

- More neutrinos. \bullet
 - Seems to affect lower energy more. \bullet

EVOLVING FRACTION ADDITIONAL

VARIANCE RESULTS

• Var(InA) for log10(E) from 18.6 to 19.0

- No field-Sibyll: 2.31 ± 0.07
- No field-EPOS: 1.97 ± 0.10
- Dolag-Sibyll: 1.32 ± 0.04
- Dolag-EPOS: 1.64 ± 0.04
- CLUES-Sibyll: 1.44 ± 0.06
- CLUES-EPOS: 1.49 ± 0.05
- 1ng1mpc-Sibyll: 1.44 ± 0.04
- 1ng1mpc-EPOS: 1.25 ± 0.07
- 1ng3mpc-Sibyll: 1.11 ± 0.02
- 1ng3mpc-EPOS: 0.89 ± 0.03

EVOLVING NUCLEI FRACTIONS (OBSERVED)

Observed Nuclei Fraction Versus Magnetic Field

SECONDARY RATIOS

Used to convert observed fractions to emitted fractions

OBSERVED < InA>

Field	Model	$\Sigma \chi^2 / \text{bin}$	γ	$\log_{10}(R_{\rm cut}/V)$	D _{cut} /Mpc	n
No Eald	SIBYLL	0.370	$2.10\substack{+0.47\\-0.14}$	$19.19\substack{+0.84\\-0.20}$	844^{+0}_{-1}	$1.344\substack{+0.014\\-0.005}$
No Field	EPOS	0.326	$1.94\substack{+0.60\\-0}$	$19.22\substack{+0.75\\-0.01}$	844^{+0}_{-1}	$1.343\substack{+0.006\\-0.005}$
Dolag	SIBYLL	0.469	$2.28^{\pm 0.14}_{-0.84}$	$19.89_{-0.98}^{+0.31}$	907^{+450}_{-50}	$1.328^{\pm 0.023}_{-0.000}$
Dotag	EPOS	0.446	$2.31\substack{+0.12 \\ -0.20}$	$19.89\substack{+0.40\\-0.38}$	889^{+146}_{-39}	$1.342\substack{+0.006\\-0.011}$
CLUES	SIBYLL	0.307	$2.65\substack{+0.00\\-0.29}$	$19.58\substack{+0.27\\-0.25}$	841^{+1}_{-0}	$1.342\substack{+0.013\\-0.007}$
	EPOS	0.295	$2.52^{+0.09}_{-0.22}$	$19.58^{+0.51}_{-0.20}$	842^{+0}_{-1}	$1.342\substack{+0.006\\-0.004}$
Rand A	SIBYLL	0.344	$2.64\substack{+0.20\\-0.25}$	$19.95\substack{+0.50\\-0.56}$	855^{+93}_{-7}	$1.343\substack{+0.008\\-0.005}$
hand.A	EPOS	0.341	$2.65^{+0.05}_{-0.30}$	$19.89^{+0.94}_{-0.32}$	844^{+113}_{-0}	$1.342\substack{+0.006\\-0.006}$
Rand.B	SIBYLL	0.236	$2.35\substack{+0.34\\-0.30}$	$19.40^{+1.64}_{-0.32}$	843^{+171}_{-0}	$1.346\substack{+0.009\\-0.006}$
	EPOS	0.237	$2.21\substack{+0.34\\-0.45}$	$19.51_{-0.38}^{+1.20}$	843^{+174}_{-0}	$1.342\substack{+0.004\\-0.007}$

Table 5. Evolving Fraction Energy Spectrum Parameters

Notes. The FR0 evolving fraction combined fit results total sum chi-square per bin, spectral index γ , exponential rigidity cutoff (log₁₀(R_{cut}/V)), trajectory cutoff (D_{cut}), and spectrum normalization for all 10 configurations. The two EAS are EPOS-LHC (EPOS) and Sibyll2.3c (SIBYLL).

Field	Model	$\Sigma \chi^2 / { m bin}$	γ	$\log_{10}(\mathrm{R_{cut}}/\mathrm{V})$	$D_{\rm cut}/{ m Mpc}$	n
No Field	SIBYLL	0.370	$2.44_{-0.23}^{+0.23}$	$19.34_{-0.25}^{+0.25}$	843^{+0}_{-0}	$1.345^{+0.006}_{-0.006}$
	EPOS	0.326	$2.47\substack{+0.12\\-0.12}$	$19.40^{+0.10}_{-0.10}$	843^{+0}_{0}	$1.340\substack{+0.004\\-0.004}$
Dolag	SIBYLL	0.469	$2.26\substack{+0.28\\-0.28}$	$19.23\substack{+0.25\\-0.25}$	867^{+193}_{-193}	$1.335\substack{+0.004\\-0.004}$
Dotag	EPOS	0.446	$2.26^{+0.19}_{-0.19}$	$19.74_{-0.18}^{+0.18}$	890^{+107}_{-107}	$1.341^{+0.003}_{-0.003}$
CLUES	SIBYLL	0.307	$2.40\substack{+0.07\\-0.07}$	$19.71_{-0.12}^{+0.12}$	842^{+0}_{-0}	$1.347\substack{+0.013\\-0.007}$
CLUES	EPOS	0.295	$2.34\substack{+0.06\\-0.06}$	$19.68^{+0.10}_{-0.10}$	842^{+0}_{-0}	$1.341\substack{+0.005\\-0.005}$
Rand A	SIBYLL	0.344	$2.37^{\pm 0.05}_{-0.05}$	$19.83^{+0.11}_{-0.11}$	853^{+35}_{-35}	$1.342^{+0.003}_{-0.003}$
hand.A	EPOS	0.341	$2.33\substack{+0.05\\-0.05}$	$19.68\substack{+0.08\\-0.08}$	851^{+30}_{-30}	$1.342\substack{+0.003\\-0.003}$
Rand.B	SIBYLL	0.236	$2.41^{+0.10}_{-0.10}$	$19.74_{-0.41}^{+0.41}$	850^{+43}_{-43}	$1.348^{+0.004}_{-0.004}$
	EPOS	0.237	$2.31\substack{+0.11 \\ -0.11}$	$19.59\substack{+0.20\\-0.20}$	853^{+49}_{-49}	$1.345\substack{+0.004\\-0.004}$

Table 6. Evolving Fraction Bootstrap Energy Spectrum Parameters

Notes. The FR0 evolving fraction combined fit bootstrap distribution most probable spectral index γ , exponential rigidity cutoff (log₁₀(R_{cut}/V)), trajectory cutoff (D_{cut}), and spectrum normalization for all 10 configurations.