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UHECRS, MAGNETIC FIELDS, AND THE LOCAL BUBBLE
➢ The Solar system resides in the Local Bubble, a cavity of hot gas surrounded by a
thick magnetized shell with a radius of 100 – 300 pc, and which results from supernovae
explosions in the past 10 – 15 Myrs.

➢ What contribution does the magnetized shell of the Local Bubble make to Faraday rotation
measures (RM) and synchrotron emission? What is its impact on large-scale Galactic
magnetic field (GMF) modeling (e.g. [1])?

➢ Significant effect on GMF modeling has been observed using a simple spherical model
for the Local Bubble [2].

➢ However, the Local Bubble is highly asymmetrical [3]. Here, we explore the consequences
of a more realistic Bubble shape obtained from 3D dust density map, and propose a solenoidal
solution for the magnetic field in the shell [4].

The shape of the inner surface of the Local Bubble
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B IN THE THICK SHELL OF THE LOCAL BUBBLE
➢ A new analytical model for the divergence-free magnetic field in the thick
shell of any-shaped bubble resulting from a supernovae explosion that has
radially swept away matter and magnetic field line:
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where B is the magnetic field in the shell, B0 is the initial magnetic field and
Λ(r, θ, ϕ) is the displacement field, that can be inferred from observation.

➢ Extraction and modeling of the inner and outer surfaces of the shell of the
Local Bubble from the 3D dust density map of [5].

Crosscuts through the Local Bubble and its surrounding dust
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CONTRIBUTION TO GMF OBSERVABLES
➢ Exploring various scenarios with varying shell complexity and explosion
center. RM Q U
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COMPARISON BETWEEN SCENARIOS AND WITH DATA

Longitude profiles for 75◦ < b < 85◦ (top) and −85◦ < b < −75◦ (bottom)
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Orthographic view of the data [1] and SCA model
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CONCLUSIONS
• Theoretical calculation of magnetic field deformations for a realistic shape of the Local Bubble ob-

tained from a 3D dust density map.

• The thick shell of the Local Bubble contributes significantly to synchrotron emission (Q and U ) at
|b| ≳ 45◦, with a qualitative match of the phase and amplitude of the signal. The contribution to
Faraday rotation measure is minimal.

• Specifics of the Local Bubble shell and explosion center are key parameters in model predictions.
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arXiv:2411.06277

[5] Lallement et al. 2019, A&A, 625, A135


