Study of the mass composition of cosmic rays with the Underground Muon Detector of AMIGA

Joaquín de Jesús
Supervisors: Dr. J.M. Figueira, Prof. Dr. R. Engel
Collaborators: Dr. M. Roth, Dr. F. Sanchez, Dr. D. Schmidt, Dr. D. Veberic
HIRSAP Meeting
22/11/2023

Outline

> Detector characterization > Fiber attenuation > Single-muon ADC charge
, Long-term performance

Status and Performance of the Underground Muon Detector of the Pierre Auger Observatory

Joaquín de Jesús ${ }^{a, b, *}$ for the Pierre Auger Collaboration ${ }^{c}$
${ }^{a}$ Instituto de Tecnología y Detección en Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina
${ }^{b}$ Karlsruhe Institute of Technolgy (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany 'Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina Full author list: https://www.auger.org/archive/authors_icrc_2023.html
E-mail: spokespersons@auger.org
> Binary reconstruction optimization

Fiber attenuation

, Binary and ADC signals decrease with fiber length

Fiber attenuation

2 Muon pattern = 1111x

- Strips with longer fibers are slightly more inefficient

Manifold length

Fiber attenuation: data \& simulations

- Stronger attenuation in data than simulations
- Simple and straightforward observable to tune simulations
- Impact on efficiency and corner-clipping?

Single-muon ADC charge

- Single-muon ADC traces
(modules with only 1 bar activated)

. Why is charge not increasing fast enough with θ in data?
\rightarrow Angular and energy distribution of muons discarded
\rightarrow Selection bias (efficiency)?
\rightarrow To be understood

Outline

, Detector characterization > Fiber attenuation
> Single-muon ADC charge
> Long-term performance
> Binary reconstruction optimization

Long-term behaviour

Binary (air-shower events)

ADC (online charge)

- Seasonal fluctuations + aging

Long-term behaviour

- Linear term (aging) substracted from \#1s and charge
- Periodic measurement of gain in a single module (F. Gollan)
- Fluctuations in signals is consistent with gain

Outline

, Detector characterization - Fiber attenuation
> Single-muon ADC charge
, Long-term performance

- Binary reconstruction optimization

Corner-clipping correction

. Inclined muons (or e-) that activate two neighboring bars
. Geometry-dependent source of overcounting
, Timing between neighboring and non-neighboring bars \rightarrow singlemuon corner-clipping probability $\mathrm{p}_{\mathrm{cc}}(\theta, \Delta \varphi) \rightarrow$ Data-driven cornerclipping correction

- Potential to extend analysis to higher multiplicities (see backup)

, Larger P_{cc} values for simulations
(simulations are too efficient?)

UMD LDF fit

- Final goal of the reconstruction is to fit a LDF \rightarrow Muon density at 450 m as a measure of the muon content

- Different reconstructions methods were tested with simulations (different likelihoods; timing of traces)
- Bias is flat with zenith (corner-clipping correction works)
- Two optimal methods applied to data

Muon content vs energy (preliminary)

, Muon content in this work in agreement with other SiPMs measurements
> ~ 18\% less muons wrt PMT data (to be understood)
, Caveats: no efficiency correction/systematics

Summary \& Outlook

Detector characterization

- Fiber attenuation characterized in ADC and binary modes
- Charge vs $\theta \rightarrow$ not increasing as sec θ (still open)

Long-term performance

- Aging -2.5\% / year in charge and -0.7\% / year in \#1s
- $\pm 1 \%$ seasonal modulation in charge and $\# 1 \mathrm{~s} \rightarrow$ consistent with gain fluctuations

Reconstruction optimization

- Data-driven corner-clipping correction
- Preliminary results in data show very good agreement with previous SiPM results (different methods/reconstructions)
- There is a tension between SiPM and PMT data ($\sim-18 \%$)

Outlook

- Fine tune simulations (fiber attenuation)
- Compare LDF with previous experiments
- Mass composition analysis

Backup

Corner-clipping for higher multiplicities

- Δt for isolated neighboring pairs \& nonneighboring pairs combinations
- Potential to extend the analysis closer to the соге
- Increase statistics (module-by-module analysis?)
- To study: selection bias? Definition of pcc?

Attenuation correction: impact of $\boldsymbol{\theta}_{\text {ref }}$

$$
\Theta_{\text {ref }}=30^{\circ}
$$

Most of the factors are close to 1 (good)

Attenuation correction

- CIC countdown method, $\theta_{\text {ref }}=35^{\circ}$

Attenuation correction

- CIC countdown method, $\theta_{\text {ref }}=35^{\circ}$
- Weighted mean of parameters a and b

$$
\rho_{35}=\rho_{450} / f_{\text {att }}(\theta)
$$

Long-term performance: rate of online charge

- Rate of T1 + single-muon pattern
- $\pm 20 \%$ fluctuation \rightarrow To be investigated

Single-muon ADC traces

Previous work

Figure 4.10: 1 PE amplitude as a function of the SiPM temperature over an eight-month period with a temperature range of $\sim 10-30^{\circ} \mathrm{C}$. The colors indicate the months: greenish for the coldest season and reddish to the warmest. The dotted-gray line shows 1 PE amplitude temperature dependence had there not been any temperature compensation in the front-end electronics. The almost constant 1 PE amplitude shows that the gain stabilization works at the level of $0.2 \% /{ }^{\circ} \mathrm{C}$.

ADC T1 - Charge - Module by module analysis

$y=a \sin (2 \pi t / \tau-\delta)+m x+b$

Aging: m = -2.5 \% / уеаг
Consistent with the 'global' analysis

Single-muon charge vs θ : angular distribution of muons

- Using $\theta \mu$ or θ sh yields the same slope
- Angular distribution of muons discarded

- Secant varies slowly for small $\theta \rightarrow$ it still holds that $\sec \theta \mu \sim \sec \theta$ sh

Single-muon charge vs θ : energy spectrum of muons

Hypothesis

- Vertical events have lower energy muons \rightarrow more influence of below-MIP muons
\rightarrow If I do cut in kinetic energy $\lg ($ Kinetic energy $/ \mathrm{GeV})>-0.5$ I should see a difference in charge vs sec θ

Single-muon charge vs θ : energy spectrum of muons

- Applying energy cut has no effect on the slope
- Energy spectrum of muons discarded

Estimating $N \mu$ without time resolution

$. .00011111000 .$.	
. $.000100 \ldots$	$\ldots 1111110 \ldots$
. $.000000 \ldots 11111 \ldots$	

.. 000000 000111111 ...

Time

- $k=$ \# bars with at least one muon pattern ($k=3$ in the example)
- It can be shown

$$
\hat{N}_{\mu}=\frac{\ln (1-k / 64)}{\ln (1-1 / 64)}
$$

- Statistically simple model and straightforward
- Independent of the time distribution of muons

Estimating $N \mu$ with time resolution

- For each time bin i:
- \# of muon patterns starting in bin k_{i}
- \# of inhibited segments (earlier muon pattern matchs + dead time) $n_{i}{ }^{\text {inh }}$
$\hat{N}_{\mu}=\sum_{i \in \text { time bins }} \frac{64}{64-n_{i}^{\text {inh }}} \frac{\ln \left(1-k_{i} /\left(64-n_{i}^{\text {inh }}\right)\right)}{\ln \left(1-1 /\left(64-n_{i}^{\text {inh }}\right)\right)}$
- Subject to electronic undershoot bias

Corner-clipping muons

, Inclined muons (or e-) that activate two neighboring bars
. Geometry-dependent source of overcounting
» Data-driven correction with single-muon corner-clipping probability $\mathrm{p}_{\mathrm{cc}}(\theta, \Delta \Phi)^{*}$

$$
\begin{gathered}
\hat{N}_{\mu}=\frac{1}{\left(1+p_{\text {cc }}(\theta, \Delta \phi)\right)} \frac{\ln (1-k / 64)}{\ln (1-1 / 64)} \quad \text { w/o time resolution } \\
\hat{N}_{\mu}=\begin{array}{|c|c|c|}
\hline \frac{1}{\left(1+p_{\text {cc }}(\theta, \Delta \phi)\right)} \sum_{i \in \text { time bins }} \frac{64}{64-n_{i}^{\text {inh }}} \frac{\ln \left(1-k_{i} /\left(64-n_{i}^{\text {inh }}\right)\right)}{\ln \left(1-1 /\left(64-n_{i}^{\text {inh }}\right)\right)} \quad \text { w/ time resolution }
\end{array}
\end{gathered}
$$

Muon LDF fit - Poisson Likelihood

Event likelihood

$$
L_{\text {event }}=\prod_{j} \operatorname{Poisson}_{\hat{N}_{\mu_{j}}}\left(\mu_{j}\right)
$$

30

Muon LDF fit - Binomial Likelihood

measurement $\quad k_{j} \begin{aligned} & =\text { \# bars with at least } \\ & \text { one pattern }\end{aligned}$
expected value $\mu_{j}=\rho_{\mathrm{LDF}}\left(r_{j}\right) A \cos \theta$

likelihood $\operatorname{Binom}_{k_{j}}\left(n=64, p=1-e^{-\mu_{j} / 64}\right)$

$$
L_{\mathrm{event}}=\prod_{j} \operatorname{Binom}_{k_{j}}\left(n=64, p=1-e^{-\mu_{j} / 64}\right)
$$

D. Ravignani, A. D. Supanitsky, Astropar. Phys. (2015), 65, 1-10

Available reconstructions

Likelihood

1) Now included in a consistent way in Offline (see backup)
2) Test performance of each reconstruction (discrete CORSIKA library + Offline)

- Each shower reconstructed once with each method
, Bias and resolution in ρ_{450} with dense ring

