Preface

PhD goals (defined so far, non-extensive list...)

- Implement station-level algorithm for SSD calibration
- Involve SSD in DAQ decision process (new triggers...)
- Analyse gathered data for rare cosmic ray events (γ, υ, GZ-effect...)

Hopefully more results to show next year ;)

PIERRE

OBSERVATORY

Potential of neural network triggers for the Water-Cherenkov detector array of the Pierre Auger Observatory

Paul Filip – HIRSAP meeting 21.11.2023 – 22.11.2023

www.kit.edu

SD Array / trigger hierarchy / WCD time traces

- Around ~1600 stations
- Triangular 1500 m grid spacing
- Upgrade from UB to UUB
 - 1 Water-Cherenkov detectors (WCD)
 - 1 Surface scintillator detector (SSD)
 - 1 Radio antenna (RD)

SD Array / trigger hierarchy / WCD time traces

- Around ~1600 stations
- Triangular 1500 m grid spacing
- Upgrade from UB to UUB
 - 1 Water-Cherenkov detectors (WCD)
 - 1 Surface scintillator detector (SSD)
 - 1 Radio antenna (RD)

Too comput. expensive to read all measured data at all times! Implement trigger hierarchy

SD Array / trigger hierarchy / WCD time traces

Threshold trigger (Th)

Time over threshold (ToT) & ToT-like triggers

Threshold trigger (Th)

- PMTs register signal 3.2 VEM_{Peak} (1.75 VEM_{Peak} for T1)
- Threshold must be exceeded simultaneously for all PMTs

Convolutional neural networks

- Specialized for image / object recognition
 - Different filters (matrices) scan parts of an image
 - Large output where filter and image look alike
 - **Emergent object detection through multiple layers**
- Treat WCD time traces as pictures
 - 3 PMTs represent image height
 - Temporal component as width

- Long-Short-Term-Memory (LSTM) architecture
 - Has internal connections that point from output to input
 - Earlier processed information can influence later calculations
 - Treat time series very efficiently / elegantly

- Long-Short-Term-Memory (LSTM) architecture
 - Has internal connections that point from output to input
 - Earlier processed information can influence later calculations
 - Treat time series very efficiently / elegantly
- Forget-Gate
 - What to keep from previous iterations
- Input-Gate
 - What to save from this iteration
- Output-Gate
 - What to output from (updated) cell state

- Long-Short-Term-Memory (LSTM) architecture
 - Has internal connections that point from output to input
 - Earlier processed information can influence later calculations
 - Treat time series very efficiently / elegantly
- Forget-Gate
 - What to keep from previous iterations
- Input-Gate
 - What to save from this iteration
- Output-Gate
 - What to output from (updated) cell state

- Long-Short-Term-Memory (LSTM) architecture
 - Has internal connections that point from output to input
 - Earlier processed information can influence later calculations
 - Treat time series very efficiently / elegantly
- Forget-Gate
 - What to keep from previous iterations
- Input-Gate
 What to save from this iteration
 - what to save from this iterat
- Output-Gate
 - What to output from (updated) cell state

Network architectures

120 bins x 3 PMTs = 360 input values => 1 binary output (1 = Shower, 0 = Background)

Convolutional neural networks (CNNs)

- Good at recognizing objects in images
- Treat input data as 3x120 pixel image
- Output independent of signal position in window
- 1-2 convolutional layers with dense final layer
- 84 to 890 free trainable parameters

18

Recurrent neural networks (LSTMs)

- Good at recognizing patterns sequential data
- Basic LSTM receives 1-dimensional input
- Implement 1 distinct LSTM for each PMT
- 12 to 44 free trainable parameters

Training results

Training results

Training results

Resulting LSTM T3 efficiencies at $t_s = 0.5 \text{ VEM}$

Most drastic gains at high inclinations

• Possibly higher gains at $\theta \ge 65^{\circ}$

Summary / Outlook

Test data-driven, machine learning concepts

- Analyse capability of shallow NNs (few parameters!) as SD T2-triggers
- Consider convolutional (CNN) and simple recurrent neural networks (LSTM)
- Verify performance of NNs with measured background data
- Control trigger rate by implementing charge cut

Convolutional neural networks

- Performance of simple CNN architectures on par with Th-Trigger
- CNN architecture has worse performance than ToT-trigger
- Filtered & downsampled data preferred over full bandwidth input

LSTM / recurrent neural networks

- First results indicate performance on par with or better than ToT
- Gains in event detection efficiency at high shower angles

Summary / Outlook

Lot of work needed before prototyping stage

- Presented results in signal detection efficiency stem from simulations only
- No primary distinction, only data from protons considered
- Only one hadronic interaction model (QGSJET-II.04)
- No steps taken yet to implement this on our FPGAs (feasibility?)
- Ground work is completed
 - Bayesian folding simplifies analysis and yields the same results as Offline
 - Analysis chain is implemented and ready to run
 - Neural networks show potential for SD T2-triggers

Backup

KIT - The Research University in the Helmholtz Association

www.kit.edu

IAP, KIT Faculty for Physics

IAP, KIT Faculty for Physics

Nadia : 1723

Residuals – LTP fitfunction

35 22.11.2023

Random traces – Power spectrum

Trace building

Muon cut

Kernel size

%

T3 efficiency /

T3 efficiency calculation

						100	_						-100
16_16.5	0.0	0.0	0.0	0.0	0.0	100	16_16.5	0.0	0.0	0.0	0.0	0.0	100
ge 17_17.5 16.5_17	4.9	1.0	0.1	0.0	0.0	-80	16.5_17	5.0	1.5	0.3	0.0	0.0	-80
	25.7	10.7	2.7	1.1	0.2	-60 ×	ge 17_17.5	26.3	11.6	3.0	1.0	0.1	-60
ergy ran 17.5_18	76.7	66.3	46.6	25.8	8.0	ficiency	ergy ran 17.5_18	76.0	62.0	43.0	30.8	6.1	
Ene 18_18.5	98.1	97.0	93.6	79.7	48.7	-40 E T3 ef	Ene 18_18.5	98.2	96.4	93.2	81.9	49.7	-40
18.5_19	100.0	100.0	99.9	99.4	92.6	-20	18.5_19	100.0	100.0	100.0	99.7	93.6	-20
19_19.5	100.0	100.0	100.0	100.0	99.9		19_19.5	100.0	100.0	100.0	100.0	99.9	
	0_34	34_44	^{44_51} Zenith range	51_56	56_65	-0		0_34	34_44	^{44_51} Zenith range	51_56	56_65	-0

Offline approach

Bayesian folding

LSTM permutations

Network parameters

Туре	Input size	Kernel size	$n_{\rm train}$	w/ dense extension
CNN	(3, 120)	(3,3)	140	834
CNN	(3,120)	(3,10)	216	534
CNN	(3,120)	(3,30)	444	714
CNN	(3, 40)	(3,3)	84	210
CNN	(3,60)	(3,3)	100	290
CNN	(3,90)	(3,3)	120	390
CNN	(3,240)	(3,3)	220	890
LSTM	(3,120)	—	12	(single layer)
LSTM	(3,120)	-	(three layers)	44