Anisotropy studies with Galactic magnetic fields in a catalog based search

L. Deval, R. Engel, T.Fitoussi, M.Unger

HIRSAP meeting - Buenos Aires

22.11.2023

Current anisotropies analysis

- 4 source catalogs have been considered in the Auger analysis
- Focus of this study: Starburst Galaxies (SBG) (44 sources with distances between 2.7 Mpc and 180 Mpc)
- Main contribution related to 3 sources

Role of the galactic magnetic field

• No coherent deflections have been considered in the flux model \rightarrow What is the meaning of the observed correlation?

- Analysis based on 2019 ICRC proceeding:
 - SBG catalog with 33 sources
 - TS = 29.5 (Highest TS reported so far)
 - Events considered: 1309 above 38 EeV
 - GMF model: Jansson&Farrar (2012)
 - Extra Galactic propagation: CRPropa3

Fit results for mock data sets

7

Important changes since last year

- Simulation framework:
 - Updated catalog (from 33 to 44 sources)
- TS analysis:
 - Updated number of events above 38 EeV
 - Updated best fit parameters values
 - Updated thresholds for TS selection

- What is the impact on the analysis is different configurations of the GMF are considered?
- Lens creation (*):
 - Backtracking of anti-proton (nside=1024)
 - $R_{min} = 18.00, R_{max} = 21.00$
 - GMF model: Jansson&Farrar (2012)
 - 9 lenses have been constructed with different configuration of the random field

*: CRPropa3

- Selection parameters:
 - α ∈ [0.05,0.15]
 - $\theta \in [11,23]$
- Similar behavior for different lenses if 2 parameters are considered
- General max for $f_{src} = 0.15$
- Source contribution is increased $(f_{src} > \alpha^{Auger})$

- Selection parameters:
 - $\alpha \in [0.05, 0.15]$
 - θ ∈ [11,23]
 - TS ∈ [14,34]
- Similar behavior for different lenses if 3 parameters are considered
- General max for $f_{src} = 0.2$
- Source contribution is increased $(f_{src} > \alpha^{Auger})$

Closer look: LiMa analysis

- Recap current LiMa computation:
 - Best signal fraction (α): 0.09
 - Best search radius (θ): 15°
 - LiMa significance:
 - Overdensity in the CenA region
 - Smoothing angle: 24°
 - Energy threshold: 41 EeV
 - Coherent deflections have not been considered
- Strength and angular scale of the first and second "hot spot" in the data?

Ref: Arrival Directions of Cosmic Rays above 32 EeV from Phase One of the Pierre Auger Observatory

- Method:
 - LiMa computation \rightarrow LiMa_{inside}
 - Exclusion circular region (34°) around Centaurus region
 - LiMa computation after exclusion \rightarrow LiMa_{outside}
 - Set of points (LiMa_{inside}, LiMa_{outside}) displays the main difference with observed data ^a in term of:
 - value
 - position in the sky

a
LiMa $_{inside}^{obs} = 5.4$, LiMa $_{outside}^{obs} = 2.8$

Closer look: LiMa behavior inside and outside Centaurus region

- Presence of LiMa_{outside} > LiMa_{outside}:
 - NGC253 causes a large overdensity in all 9 GMF realizations
 - NGC253 causes a large overdensity which dominates the sky
- Presence of LiMa_{inside} > LiMa^{obs}_{inside}:
 - Overshooting due to the deflected events in NGC4945 region coming from M83
- Is an EGMF necessary?

• EGMF applied by considering a Fisher distribution where ^a:

$$heta_{sm} = heta^* \sqrt{rac{D_{source}}{D^*}} \; rac{R^*}{R_{event}}$$

- Effect of the extra smearing:
 - Broadening the region of interest \rightarrow LiMa_{inside} and LiMa_{outside} reduced
 - It is possible to recover scenarios compatible with both values (only 22 of 10.000 realizations in the lower-right quadrant)

 $^{^{}a}D^{*}{=}3.72$ Mpc, $R^{*}{=}40/7$ EV and θ^{*} = 5°

 EGMF applied by considering a Fisher distribution where ^a:

$$\theta_{sm} = \theta^* \sqrt{\frac{D_{source}}{D^*}} \; \frac{R^*}{R_{event}}$$

- Effect of the extra smearing:
 - Broadening of the region of interest \rightarrow LiMa_{outside} and LiMa_{outside} reduced
 - It is possible to recover scenarios compatible with both values (only 22 of 10.000 realizations in the lower-right quadrant)
 - Overall behavior for all GMF configurations?

 $^{^{}a}D^{*}{=}3.72$ Mpc, $R^{*}{=}40/7$ EV and θ^{*} = 5°

• EGMF applied by considering a Fisher distribution where ^a:

$$heta_{sm} = heta^* \sqrt{rac{D_{source}}{D^*}} \; rac{R^*}{R_{event}}$$

- Effect of the extra smearing:
 - Broadening of the region of interest \rightarrow LiMa_{outside} and LiMa_{outside} reduced
 - It is possible to recover scenarios compatible with both values (only 45 of 90.000 realizations in the lower-right quadrant)

 $^{^{}a}D^{*}{=}3.72$ Mpc, $R^{*}{=}40/7$ EV and θ^{*} = 5°

- Introduction of a rigidity dependence in the TS:
 - Fisher distribution with a smearing angle which keeps track of the rigidity of the particle ($R = E_{event}/Z_{event}$)
 - Smearing angle:

$$\theta_{\text{smearing}} = \theta^* \sqrt{\frac{D_{\text{source}}}{D^*}} \frac{R^*}{R_{\text{event}}}$$
(1)

- Every simulated event is smeared with and angle which follows equation $\boldsymbol{1}$
- n^{H_1} is computed throughout the simulated events and not analytically
- TS is computed with the Auger events and still test the validity of the alternative hypothesis versus isotropy (exposure)

- Catalog based analysis (ApJ 2022): no coherent deflections included
- This study: simulated realizations (CRPropa3+JF12)
- Realizations return compatible parameters in terms of anisotropy fraction, search radius and test statistic
- Galactic variance:
 - Minor differences in the behavior of the analysis when different configurations of the GMF are considered
 - Considering a 3 parameters selection brings a minor shift in the best scenario
- LiMa analysis:
 - NGC253 overdensity present also if different configurations of the random field are considered
 - Introduction of EGMF smearing reduces the overdensity contribution to the sky map
 - Low probability of compatibility with both values also when different GMF configurations are considered