

Dark matter detection beyond the WIMP: pushing sensitivities with skipper-CCDs

A. M. Botti* for the SENSEI[†] and OSCURA collaborations

Helmholtz International School for Astroparticle Physics and Enabling Technologies Workshop Nov 2023

Image: SENSEI sensor

* Fermi National Accelerator Laboratory and the University of Chicago \cdot <code>abotti@fnal.gov</code>

† Sub-Electron-Noise Skipper-CCD Experimental Instrument · https://sensei-skipper.github.iowww

Outline

- 1. Dark matter and its (direct) detection
- 2. Building a new detector
- 3. Examples
- 4. Skipper-CCDs for Dark Matter detection
 5. The Oensei experiment at MINOS
 6. The Oensei experiment at SNOLAB
- 7. Prospects

Image: Skipper-CCD testing setup

Dark-matter evidence

- → Galaxy gas rotation
- → CMB
- → Cluster collision
- → Gravitational lenses
- → Structure formation
- → etc

DM exists and its massive... or we **REALLY** don't get gravity

If it is a new particle... we have a lot to search:

NASA, ESA, STScI, CXC.

Hubble space telescope

Dark-matter detection

Dark-matter candidates

WIMPs favoured by **ACDM**

L. Baudis, Phys. Dark Universe 4 (2014) p.50-59

Targets

- \rightarrow Coherent nucleus interaction σ n-DM
- → Nucleus / electron interactions
- → Light nuclei for mDM << 10 GeV
- → Targets: noble gases / liquids, cryogenic crystals , semiconductors, scintillators
- \rightarrow Electron interactions
- → Targets: noble gases / liquids, cryogenic crystals, semiconductors, scintillators
- → Photon mixing, photoelectric absorption
- → Targets: resonant cavities, semiconductors.

ADMX Collaboration

SuperCDMS Collaboration

DAMIC Collaboration

Enabling technologies

Experimental examples

Xenon 1T (noble Gas/Liquid)

- → dual-phase TPC with Xe at T ~ 170 K
- → 2016-2018 at LNGS (3600 mwe)
- → Nucleus recoil: no evidence of WIMPs
- → Electron recoil: reported 3.5 σ excess at about 1~7 keV which turn out to be a background

SuperCDMS SNOLAB (cryogenic)

- → SuperCDMS SOUDAN (2012 2015) sucesor.
- → 40 kg Ge/Si solid-state detectors at T ~ mK.
- → Beginning 2024 at SNOLAB (6000 mwe).
- → Leading limits on low-mass WIMPs

Experimental examples

ADMX (resonant microwave cavity)

- → 8 Tesla magnet
- → Operated T ~ 100 mK to a few K.
- → Since 2010 at Washington (no overburden).
- → Upgrade undergoing.
- → Best constraints in the 2.66 3.31 μ eV region.

DAMIC (CCD)

- → 1st DM experiment with CCD.
- → 40 g Si at T ~ 140 K.
- → Beginning ~ 2017 at SNOLAB (6000 mwe).
- → Excess reported (2020) and confirmed with skipper-CCD upgrade (2023)

Experimental examples

ADMX (resonant microwav

- → 8 Tesla magnet
- → Operated T ~ 100 mK to a few k.
- → Since 2010 at Washington (no overburden).
- → Upgrade undergoing.
- → Best constraints in the 2.66 3.31 µeV region.

Confirmation of the spectral excess in DAMIC at SNOLAB with skipper CCDs

A. Aguilar-Arevalo,¹ I. Arnquist,² N. Avalos,³ L. Barak,⁴ D. Baxter,⁵ X. Bertou,³ I.M. Bloch,^{6,7}
A.M. Botti,⁵ M. Cababie,^{8,9,5} G. Cancelo,⁵ N. Castelló-Mor,¹⁰ B.A. Cervantes-Vergara,¹ A.E. Chavarria,¹¹
J. Cortabitarte-Gutiérrez,¹⁰ M. Crisler,⁵ J. Cuevas-Zepeda,¹² A. Dastgheibi-Fard,¹³ C. De Dominicis,¹⁴
O. Deligny,¹⁵ A. Drlica-Wagner,^{5, 12, 16} J. Duarte-Campderos,¹⁰ J.C. D'Olivo,¹ R. Essig,¹⁷ E. Estrada,³
J. Estrada,⁵ E. Etzion,⁴ F. Favela-Perez,¹ N. Gadola,¹⁸ R. Gaïor,¹⁴ S.E. Holland,⁷ T. Hossbach,²
L. Iddir,¹⁴ B. Kilminster,¹⁸ Y. Korn,⁴ A. Lantero-Barreda,¹⁰ I. Lawson,¹⁹ S. Lee,¹⁸ A. Letessier-Selvon,¹⁴
P. Loaiza,¹⁵ A. Lopez-Virto,¹⁰ S. Luoma,¹⁹ E. Marrufo-Villalpando,¹² K.J. McGuire,¹¹ G.F. Moroni,⁵
S. Munagavalasa,¹² D. Norcini,¹² A. Orly,⁴ G. Papadopoulos,¹⁴ S. Paul,¹² S.E. Perez,^{8,9,5} A. Piers,¹¹
P. Privitera,^{12, 14} P. Robmann,¹⁸ D. Rodrigues,^{8,9,5} N.A. Saffold,⁵ S. Scorza,¹⁹ M. Settimo,²⁰
A. Singal,^{17,21} R. Smida,¹² M. Sofo-Haro,^{5,22} L. Stefanazzi,⁵ K. Stifter,⁵ J. Tiffenberg,⁵ M. Traina,¹¹
S. Uemura,⁵ I. Vila,¹⁰ R. Vilar,¹⁰ T. Volansky,⁴ G. Warot,¹³ R. Yajur,¹² T-T. Yu,²³ and J-P. Zopounidis¹⁴

(DAMIC, DAMIC-M and SENSEI Collaborations)

- 100 y Statt 140 K.
- → Beginning ~ 2021 at SNOLAB (6000 mwe).

- L. Barak, E. Etzion, Y. Korn, A. Orly, T. Volansky
- A. M. Botti, G. Cancelo, F. Chierchie, M. Crisler, A. Drlica-Wagner, J. Estrada, G. Fernandez Moroni, N. Saffold, M. Sofo Haro, L. Stefanazzi, K. Stifter, J. Tiffenberg, S. Uemura
- P. Adari, R. Essig, A. Singal, Y. Wu
- L. Chaplinsky, R. Essig, D. Gift, S. Munagavalasa, A. Singal
- A. Desai, T.-T. Yu
- I. Lawson, L. Steffon, S. Scorza
- I. M. Bloch
- S. Holland

¹ Also Fermilab
 ² Also U. Chicago
 ³ Also CAB, CNEA-CONICET-IB

Fully funded by Heising-Simons Foundation & leveraging R&D support from Fermilab

11

The Oensei Experiment

Sub-Electron-Noise Skipper-CCD Experimental Instrument

New generation Charge Couple Devices **(CCD) LBNL** MicroSystems Lab Energy threshold ~ **1.1 eV** (Si bandgap) and readout noise ~ **0.1 e**⁻

Main goals

- · First DM detector with Skipper-CCDs
- \cdot Validate technology for DM and ν detection
- · Probe DM masses at the MeV scale (e recoil)
- Probe axion and hidden-photon DM masses > 1 eV (absorption)

The Oensei Experiment

First Skipper-CCD prototypes

- Prototype designed at LBNL MSL
- 200 & 250 μm thick, 15 μm pixel size
- Two sizes 4k × 1k (0.5gr) & 1.2k × 0.7k pixels
- Parasitic run, optic coating and Si resistivity ~10k Ω
- 4 amplifiers per CCD, three different RO stage designs

Instrument:

- · System integration done at Fermilab
- · Custom cold electronics
- \cdot Firmware and image processing software
- \cdot Optimization of operation parameters

Charge-coupled devices (CCD)

Skipper CCD read-out

Multiple sampling of same pixel without corrupting the **charge** packet.

Pixel value = **average** of all samples

Suggested in **1990** by Janesick et al. (doi:10.1117/12.19452)

Skipper CCD read-out

1. **pedestal** integration.

2. signal integration.

- 3. charge = signal pedestal.
- 4. **Repeat** N times.
- 5. Average all samples.

Then, both high- and low-frequency noise is reduced

Skipper-CCD read-out noise

New Skipper CCD: charge in each pixel is measured multiple times

Skipper-CCDs for dark matter

Light-**DM** mass range:

- . 1-1000 MeV for e⁻ recoil
- . 1~1000 eV for absorption
- . 0.5~1000 MeV Nucleus recoil (Migdal effect)

Sensitivity to 1,2,3 e⁻ signals needed: Skippers can do this!

But only if we understand and control **backgrounds...**

R. Essig et al, JHEP 05 (2016), 046

Background sources: detector

Exposure independent

- Spurious charge (10⁻² to 10⁻⁵ e /pix/image)
- Amplifier light (10^{-1} to 10^{-5} e⁻/pix/image)

Exposure dependent

- \cdot Dark current (10⁻⁵ e⁻/pix/day at 135 K)
- · Light leaks

Single electron rate reduced by optimizing operation parameters

- · Read-out mode: continuous vs expose
- · Voltage configuration
- · Amplifier off while exposure

The SENSEI Collaboration. Phys. Rev. Applied 17, 014022 (2022)

Background sources: environment

High-energy:

- · Air shower muons
- · Nuclear decays
- · x/ɣ-rays

Low-energy:

- · IR photons
- · Halo and transfer inefficiency
- · Compton scattering
- \cdot Charge collection inefficiency

Environmental background is reduced with shielding, and removed from data with quality cuts

The SENSEI Collaboration - Phys. Rev. Lett. 125, 171802 (2020)

Background goal

	The 🔘	ensei Exp	periment	
2017	2018	2019	2020	Ongoing
Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning at SNOLAB (6000 m.w.e.)
	Preadout stages 200 um thick 0.1 gram mass	lcm	The SENSEI Collaboration Physical Review Letters 121.6 The SENSEI Collaboration Physical review letters 122.16	5 (2018): 061803. 5 (2019): 161801.

The Orensei Experiment

2017	2018	2019	2020	Ongoing
Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning at SNOLAB (6000 m.w.e.)

New device @ MINOS

- First skipper-CCD optimized for DM detection
- 5.5 Mpix of 15 µm
- 675 µm thick
- Active mass ~ 2 g
- 20 kΩ
- 4 amplifiers
- T ~ 135 K + vacuum

CHICAGO **Fermilab** Oensei

Quality cuts

N_e Cuts	1		2		3		4		
1. Charge Diffusion	-	1.0	0.	228	0.7	761	0.7	778	
	Eff.	#Ev	Eff.	#Ev	Eff.	#Ev	Eff.	# Ev	
2. Readout Noise	1	$> 10^{5}$	1	58547	1	327	1	155	
3. Crosstalk	0.99	$> 10^{5}$	0.99	58004	0.99	314	0.99	153	
4. Serial Register	~ 1	$> 10^{5}$	~ 1	57250	~ 1	201	~ 1	81	
5. Low-E Cluster	0.94	42284	0.94	301	0.69	35	0.69	7	
6. Edge	0.70	25585	0.90	70	0.93	8	0.93	2	
7. Bleeding Zone	0.60	11317	0.79	36	0.87	7	0.87	2	
8. Bad Pixel/Col.	0.98	10711	0.98	24	0.98	2	0.98	0	
9. Halo	0.18	1335	0.81	11	~ 1	2	~ 1	0	
10. Loose Cluster	N	/A	0.89	5	0.84	0	0.84	0	
11. Neighbor	~ 1	1329	~ 1	5		N/	/A		
Total Efficiency	0.	069	0.105		0.341		0.349		
Eff. Efficiency	0.	0.069		105	0.325		0.327		
Eff. Exp. [g-day]	1	.38	2.09		9.03		9.10		
Observed Events	131	$1.7^{(*)}$	5		0		0		
90%CL [g-day] ⁻¹	525	$5.2^{(*)}$	4.	449	0.2	255	0.2	253	

Example image

Masking

Summary: from prototype to science grade

Active mass ~ **0.1 g 0.019 gram-day** exposure 0.14 e- RO noise (**800** samples) SEE ~ **1.14 e-/pixel/day**

Active mass ~ 0.1 g 0.069 gram-day exposure 0.14 e- RO noise (800 samples) SEE ~ 0.005 e-/pix/day Active mass ~ **2 g 19.926 gram-day** exposure 0.14 e- RO noise (**300** samples) SEE ~ **1.6x10⁻⁴ e-/pix/day**

Results 2020

Heavy mediator *e*⁻ scattering *Light* mediator *e*⁻ scattering Absorption

2023: Milli-charged particles @ MINOS

Extension of previous analysis to 6e-

	$1e^-$	$2e^-$	$3e^-$	$4e^-$	$5e^-$	$6e^-$
Efficiency	0.069	0.105	0.325	0.327	0.331	0.338
Exp. [g-day]	1.38	2.09	9.03	9.10	9.23	9.39
Obs. Events	1311.7	5	0	0	0	0

The Oensei Experiment

		2020	2019	2018	2017
Demonstrate sub-electron resolution DM search with (0.1 g) at surface DM search with (0.1 g) at surface (-2 g) at MINOS (230 m.w.e.)	Production (100g) + commissioning at SNOLAB (6000 m.w.e.)	DM search with science grade (~2 g) at MINOS	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with proto-SENSEI (0.1 g) at surface	Demonstrate sub-electron resolution

SENSEI @ SNOLAB

Towards a **100 g** science grade skipper-CCD detector:

- Produce ~ **50** devices
- Packaging at Fermilab
- Testing
- Deliver and deploy at SNOLAB (6000 m.w.e.)

Vessel deployed during the pandemic by SNOLAB staff

- → 10000 dru (MINOS standard shield): proto-SENSEI
- → **3000** dru (MINOS extra shield): first science grade skipper
- → 5 (ultimate goal) dru (SNOLAB): SENSEI 100 g

SENSEI @ SNOLAB: Setup

Setup:

- Copper box for 12 copper tray
- Each tray for 2 (4) ~2g CCDs.
- Cold copper box
- 6-in copper bricks and hat inner shield
- Vacuum pump (< 2x10^-4 mbar)
- Cryocooler + heater (~140 K)
- 2 layer of copper outer shield
- 3-in lead
- 42-inch polyethylene and water shield

SENSEI @ SNOLAB: First science run

Setup:

- 6 CCDs (~13 g),
- 6144 × 1024 pixels
- 15 μ m pitch, 675 μ m thick
- Installation: 4-7/2021
- Commissioning: 10/2021-8/2022
- Science: 9/2022-4/2023

Operations:

- 20 hour exposures
- 129 images (~50% blinded)
- 7.3 hours readout, noise of ~0.14 e-
- Temperature variations of 135 K-155 K
- 1 e- density (after cuts): ~2 x 10-4 e-/pixel

SENSEI @ SNOLAB: First images

SURFACE (~20 less exposure)

- **1.** Data quality cuts to remove anomalous images
- 2. Cluster any contiguous pixels ≥1 e-
- **3.** Apply masks to images to remove:
 - Electronic noise
 - Cross-talk
 - Edges of CCDs
 - Bad pixels and columns
 - Serial register events
 - Charge transfer inefficiencies
 - Region surrounding any ≥1e- pixels
- **4.** Remove clusters with any pixels overlapping a mask
- **5.** Remove individual high-background cluster shapes

SENSEI @ SNOLAB: quality cuts

SURFACE (~20 less exposure)

- 45 unblinded commissioning images,
- 37 blinded images
- 2-10 e- channels
- Combined datasets: ~70 g-days per electron channel with cuts
- Three limits: blinded dataset, commissioning dataset, and combined commissioning + blinded exposure

SENSEI @ SNOLAB: First results

SENSEI @ SNOLAB: Second science run

- 19 CCDs (~40 g)
- Improved support
- Shield fully deployed
- Improved support
- Data acquisition starting soon

Perspectives DM with skippers

39

Perspectives mCP with skippers

OSCURA

C. Chavez et al. Sensors 22 (2022) 11, 4308 F. Chierchie et al. arXiv:2210.16418 B. Cervantes, et al. 2304.04401

10 kg skipper-CCDs:

- → 24000 channels/devices (28 GPix)
- → 1500 multi-chip modules (MCM) with 16 CCDs each
- → 94 super modules with 16 MCMs each

Read-out:

- → High-density package
- → Multiplexer + SENSEI electronics
- → ASICs

Background goal (0.01 dru):

- → Silicon based pitch adapter
- → Aluminum shielding
- → Low-background materials

OSCURA configuration

Summary

- DM is an exciting field with a lot of instrumental challenges
- **SENSEI**: first dedicated experiment searching for **e-DM** interactions with skipper-CCDs.
- **protoSENSEI** at the **surface** and **MINOS** produced first physics.
- First scientific grade skipper-CCD achieved.
- New limit with MINOS data for mCP. Best constraints around 100 MeV
- Best constraints on **DM-e-** scattering for light mediator (1-1000 MeV) and heavy mediator (1-10 MeV)
- Absorption and Migdal limits coming

- **Production** of full **100 g** detector fully funded and ongoing.
- **SENSEI** experiment will collect almost **2 million** times the exposure of the first run in ~ **2-3 years**, probing large regions of uncharted territory populated by popular models
- generations of skipper-CCD experiments foreseen for cosmic DM searches in the next ~ 7 years
- New efforts to build particle trackers at beams for mCPs

New generations with faster read-out @ FNAL

MAS Skipper-CCD

https://arxiv.org/abs/2308.09822

Skipper-CMOS

https://arxiv.org/pdf/2310.13644.pdf

Fermilab Orensei

The search for neutrinoless double beta decay. La Rivista del Nuovo Cimento 35(2)

The Canfranc Underground Laboratory. Present and Future. Igor G. Irastorza

Fermilab Orensei

And more: DarkNESS

Bubul et al 2014 observed this line at 3.5 keV in galaxy clusters using X-ray telescope.

Going back to Milli-charged particles @ MINOS

Extension of previous analysis to 6e-

	$1e^-$	$2e^-$	$3e^-$	$4e^-$	$5e^-$	$6e^-$
Efficiency	0.069	0.105	0.325	0.327	0.331	0.338
Exp. [g-day]	1.38	2.09	9.03	9.10	9.23	9.39
Obs. Events	1311.7	5	0	0	0	0

Magnetic focusing "horn" at NuMI beam.

Magnetic focusing "horn" at NuMI beam.

PIP-II

PIP-II 325 MHz spoke resonator cavity string

Magnetic focusing "horn" at NuMI beam.

PIP-II

CERN's 86-metre long Linac4 accelerator, which produces proton beams for the Large Hadron Collider. Credit: Robert Hradil, Monika Majer/ProStudio22.ch/CERN

CERN's 86-metre long Linac4 accelerator, which produces proton beams for the Large Hadron Collider. Credit: Robert Hradil, Monika Majer/ProStudio22.ch/CERN

LAMBDA workshop 2022 June 16, 2022 **Fermilab** O ensei

Skipper-CCD read-out noise

52

Skipper-CCD resolution

(Almost) Empty CCD

Front-illuminated CCD

Fermilab Orensei

Skipper-CCD for photo detection

Charge per event for 55Fe x-ray source

Compton scattering spectrum in Silicon with 241Am γ-ray source

Fermilab Orensei

Experimental approach

Proto-SENSEI runs

@ surface:

- Data from May 2017
- Sea level
- 3 mm copper shielding
- 18 images continuous read
- DC 1.14 e-/pixel/day
- 0.019 gram-day total exposure

@ **MINOS**:

- Data from 2018
- 230 m.w.e.
- Cylindrical vacuum vessel with 2" lead.
- Two readout modes (continuous & **periodic**)
- Single-electrons events
 0.1~0.005 events/pix/day
- 0.177 ~ 0.069 gram-day total exposure

Device:

- \cdot 0.9 Mpix of 15 μm and 200 μm thick
- · Active mass ~ 0.1 g
- \cdot 10 k Ω
- \cdot T ~ 130 K + vacuum
- · 4 amplifiers
- · 0.14 e- RO noise (800 samples)
- \cdot Operated with LTA board

Proto-SENSEI cuts

$\overline{\text{Cuts}}$	1	2	3	4	5
1. DM within a single pixel	1	0.62	0.48	0.41	0.37
2. Nearest Neighbor	0.8	0.8	0.8	0.8	0.8
3. Noise	0.88	0.88	0.88	0.88	0.88
4. Bleeding	0.95	0.95	0.95	0.95	0.95
Total	0.67	0.41	0.32	0.27	0.24
Number of events	140,302	$4,\!676$	131	1	0

Surface run

MINOS run

$\sim N_e$	р	eriodi	C	CO	ous		
Cuts	1	2	3	3	4	5	
1. DM in single pixel	1	0.62	0.48	0.48	0.41	0.36	
2. Nearest Neighbour		0.92			0.96		
3. Electronic Noise		1			~ 1		
4. Edge	0.92			0.88			
5. Bleeding	0.71			0.98			
6. Halo	0.80			0.99			
7. Cross-talk	0.99			~ 1			
8. Bad columns		0.80			0.94		
Total Efficiency	0.38	0.24	0.18	0.37	0.31	0.28	
Eff. Expo. [g day]	0.069	0.043	0.033	0.085	0.073	0.064	
Number of events	2353	21	0	0	0	0	

Perspectives @ SNOLAB

- Science-grade skipper-CCDs achieved
- Packaging and electronics also achieved
- Phase 1 system @ SNOLAB
- Vessel delivered to SNOLAB
- First CCDs deployed

Towards a **100 g** skipper-CCD detector:

- Produce ~ **50** devices
- Packaging at Fermilab
- Testing
- Deliver and deploy at SNOLAB
- Status of Vessel?
- → 10000 dru (MINOS standard shield): proto-SENSEI
- → 3000 dru (MINOS extra shield): first science grade skipper
- → 5 dru (SNOLAB): SENSEI 100 g

Charge-coupled devices (CCD)

CCD read-out noise

Traditional **CCD**: **charge** transferred to sense node and read **once**

Pedestal and **signal** integration reduces **high-frequency** noise.

But not low frequency...

Skipper CCD read-out

Multiple sampling of same pixel without corrupting the **charge** packet.

Pixel value = **average** of all samples

Suggested in **1990** by Janesick et al. (doi:10.1117/12.19452)

Skipper CCD read-out

1. **pedestal** integration.

- 2. **signal** integration.
- 3. charge = signal pedestal.
- 4. **Repeat** N times.
- 5. Average all samples.

Then, the low-frequency noise is reduced

Detecting dark-matter candidates

ADMX Collaboration

- → Coherent nucleus interaction σ_{n-DM}
- → Nucleus / electron interactions
- → Light nuclei for mDM << 10 GeV
- Targets: noble gases / liquids, cryogenic crystals , semiconductors, scintillators

- → Electron interactions
- → Targets: noble gases / liquids, cryogenic crystals , semiconductors, scintillators
- → Photon mixing, photoelectric absorption
- → Targets: resonant cavities, semiconductors.

Charge-coupled devices (CCD)

SENSEI @ SNOLAB

Cambiar imagenes

Towards a **100 g** science grade skipper-CCD detector:

- Produce ~ **50** devices
- Packaging at Fermilab
- Testing
- Deliver and deploy at SNOLAB (6000 m.w.e.)

Vessel deployed during the pandemic by SNOLAB stuff

- → 10000 dru (MINOS standard shield): proto-SENSEI
- → **3000** dru (MINOS extra shield): first science grade skipper
- → 5 (ultimate goal) dru (SNOLAB): SENSEI 100 g

Milli-charged particle (mCP) search in SENSEI@M#NEOBilab Orensei

