

UMD-SD muon density calibration

Carmina Pérez Bertolli

Supervisors: R. Engel, B. Wundheiler Collaborators: N. González, M. Roth, D. Schmidt

Indirect measurement of the muon content on the surface with the WCD + SSD at the highest energies

Indirect measurement of the muon content on the surface with the WCD + SSD at the highest energies

AugerPrime:

Indirect measurement of the muon content on the surface with the WCD + SSD at the highest energies

AugerPrime:

- Shower components separation
- Direct muon measurements

Indirect measurement of the muon content on the surface with the WCD + SSD at the highest energies

AugerPrime:

- Shower components separation
- Direct muon measurements

• Nested arrays for lower energies

S_{μ} estimation

- m, n depending on E, zenith and r according to A. Payeras, Malargue meeting, Nov. 2022.
- The muonic signal in the WCD is estimated
- Bias depends on composition

Calibration with infill data

• The slope is estimated with a fix offset

Offset

- Stations with no UMD signal
- Offset is fixed (for now) in 2.3 VEM

Energy and zenith dependencies

- Slope is zenith-independent
- Energy independent below 10^{17.8} eV

Comparing with simulations

Composition - Model	m
Auger	$11.82 {\pm} 0.04$
p-EPOS	$11.35 {\pm} 0.04$
p-SIBYLL	$11.31 {\pm} 0.06$
CNO-EPOS	$11.21 {\pm} 0.05$
CNO-SYBILL	$11.36 {\pm} 0.04$

• Slope of data is over simulations

Final goal: ρ_u estimation for the Main Array on-ground

UMD signal characterization and Monitoring

- Raw binary traces analysis
- Long term performance
- Monitoring

UMD signal characterization and Monitoring

channel

- Raw binary traces analysis
- Long term performance
- Monitoring

Stopping Power

Energy losses of charged particles in a medium described by the Bethe-Block equation

Index = 245: silicon dioxide (fused quartz) (SiO\sub{2}) Absorber with $\langle Z/A \rangle = 0.49930$, density = 2.200 (revised) Sternheimer coef: a k=m s x 0 x 1 I[eV] Cbar delta0 0.0841 3.5064 0.1500 3.0140 139.2 4.0560 0.00 (Restricted energy loss for Tcut = 0.05 MeV Table written with (1X, 1P9E10.3,0PF8.4, f8.5, 1pE10.3) post-Born included in pair prod *** Results below 10 MeV are not dependable *** photonuc Radloss Ionization brems dE/dx CSDA Range delta T pair beta dE/dx R D [MeV] [MeV/c] -[MeV cm^2/q]--[a/cm^2] [MeV cm^2/q] . 1.000E+00 1.457E+01 2.660E+00 0.000E+00 0.000E+00 4.793E-05 4.793E-05 5.321E+00 2.327E-03 0.0000 0.13661 4.038E+01 1.200E+00 1.597E+01 3.498E+01 0.000E+00 0.000E+00 4.802E-05 4.802E-05 3.498E+01 7.665E-03 0.0000 0.14944 3.498E+01 1.400E+00 1.726E+01 3.096E+01 0.000E+00 0.000E+00 4.811E-05 4.811E-05 3.096E+01 1.376E-02 0.0000 0.16119 3.096E+01 1.700E+00 1.903E+01 2.653E+01 0.000E+00 0.000E+00 4.824E-05 4.824E-05 2.653E+01 2.426E-02 0.0000 0.17725 2.653E+01 2.000E+00 2.066E+01 2.331E+01 0.000E+00 0.000E+00 4.838E-05 4.838E-05 2.331E+01 3.635E-02 0.0000 0.19186 2.331E+01 2.500E+00 2.312E+01 1.950E+01 0.000E+00 0.000E+00 4.860E-05 4.860E-05 1.950E+01 5.991E-02 0.0000 0.21376 1.950E+01 0.0000 0.23336 1.665E+01 3.000E+00 2.536E+01 1.686E+01 0.000E+00 0.000E+00 4.883E-05 4.883E-05 1.686E+01 8.758E-02 3,500E+00 2,742E+01 1,491E+01 0,000E+00 0,000E+00 4,905E-05 4,905E-05 1,491E+01 1,192E-01 0.0000 0.25120 1.455E+01 4.000E+00 2.935E+01 1.341E+01 0.000E+00 0.000E+00 4.928E-05 4.928E-05 1.341E+01 1.546E-01 0.0000 0.26763 1.296E+01

https://pdg.lbl.gov/2019/AtomicNuclearProperties/

Bias

• Bias is 0 and mass independent

GAP note in progress

Summary

- The estimation of S¹ shows limitations regarding bias and resolution -> a calibration with the UMD is needed
- A first calibration with data was performed: The slope obtained with data is higher than in p and CNO simulations
- Good-performance observables monitored in UMD shifts
- No bias between Offline and Stopping Power

Outlook

- Improve statistics: reconstruct more events
- Convert muons from underground to on-ground
- Study uncertainties and quality cuts of the method
- Include Auger-Mix simulations for comparison

Composition of the soil in the UMD site

"The total of the components analyzed represents ~ 99.8% of the total weight of the samples, and these three elements ~ 81.4%, with the following averages: $(64.4 \pm 1.6)\%$ for SiO₂, $(12.1 \pm 0.8)\%$ for Al₂ O₃ and $(4.9 \pm 0.8)\%$ for CaO."

 $\rho = 2.38 \text{ g/cm}^3$ (soil mean density)

Compuesto [g/100 g]	SiO_2	Al_2O_3	CaO
Tierra del Fuego - 1,0 m	64,51	11,48	5,60
Tierra del Fuego - 2,0 m	66,90	12,64	3,71
Tierra del Fuego - 3,0 m	65,64	12,25	4,50
Lety - 1,0 m	61,80	12,71	5,00
Lety - 2,0 m	63,13	10,78	5,92
Lety - 3,0 m	64,27	12,50	4,75

Flux diagram

• From the Corsika shower make a list of all muons arriving inside a surface ring in the shower plane around 450 m.

Auger-Composition ICRC2017

 proton and CNO with higher fractions at the infill energy range

Energy and zenith distributions on ground

- The median energy is ~6% higher for Fe muons than p
- In the zenith distribution can be seen that muons from Fe have slightly less deflection than the ones from p

Distributions underground

- The energy spectrum is extended to lower energies due to energy loss of muons in the soil
- It can be observed that muons that reach the depth of the UMD have more vertical zenith angles since they're track into the soil is shorter

Comparing Offline with Stopping Power (underground)

 A difference of ~2% can be observed between injected density in the UMD and the one from Stopping Power

Bias at 30°

Bias is 0 and mass independent

Bias at lower energies

• Bias is 0 and mass independent

Why estimating S_{μ} ?

• Correlation with the estimated S_u is an 10 % better