Search for mass-enhanced anisotropy on the arrival directions of ultra-high-energy cosmic rays: updates and prospects

Edyvania Emily Martins, Ralph Engel, Silvia Mollerach, Markus Roth, and Darko Veberič

edyvania.martins@kit.edu

cFlow-2 (Hoffman et al. 2018

Extragalactic UHECR

- Higher-order multipoles not significant
- Excess away from Galactic center
- Above 8 EeV

Science 357 (2017) 1266

Harmonic Analysis

Emily Martins Mass-e

Amplitude & phase

Increasing amplitude above 2 EeV + Phase shifted away from Galactic centre

Suggests shift from galactic to extra-galactic origin of UHECR anisotropy

Amplitude & phase

PoS(ICRC2023) 252

Galactic magnetic field effects

-90

• Damping of dipole amplitude

• Direction shifted towards the plane

- Rigidity-dependent = composition-sensitive
- B is modeled

Emily Martins Mass-enhanced anisotorpies

UNTANGLING To probe the effects of A/Z on the anisotropy, separate data into *light* and *heavy* populations

• Separation method

Emily Martins

Mass-enhanced anisotorpies

Al generated image with Canva Magic Studio

Separation method

- Scrutinize separation on 'Auger-like' simulation dataset
- Composition model
- R-dependent dipole amplitude model

UNTANGLING

To probe the effects of A/Z on the anisotropy, separate data into *light* and *heavy* populations

To probe the feasibility of measuring such effects with Auger data:

Al generated image with Canva Magic Studio

Extended Auger mix

Extending the FD-based composition fractions

MCMC fraction fit of Xmax distributions from FD measurements by Olena Tkachenko, <u>PoS ICRC2023 (2023) 438</u>
Mass-ordering of components as seen in GAP-2022-007
HIM-dependent but no assumption on sources, GMF, EGMF

Extended Auger mix

7

Universality-based mass-estimator

Extended Auger mix + Spectrum

- Reconstruct Xmax and Rµ with WCD (+SSD in AugerPrime)
 - Xmax and Rµ are independent
 - From cascade equations, combine both
 - into In A estimator
 - Select tails of distributions = *light* vs *heavy*

R-dependent dipole amplitude model

Emily Martins

Mass-enhanced anisotorpies

$$d = d_R \left(\frac{E}{Z \,\mathrm{EeV}}\right)^{\beta_R}$$

- Scanned parameters, given composition model
- Spectrum-weighted average in large Ebins
- No assumption on sources

Light & heavy separation

8 - 16 EeV (N=33873, 15% p, 48% He, 33% CNO, 4% Fe)

Method	Value	$\ln A_l^{th}$	N _l	d _l	p ₁ (%)	He _l (%)	O _l (%)	Fe _l
SMD	1.88	-0.6	³⁹⁴² ~12%	0.1026	26.76	55.48	17.07	0.6

16 - 32 EeV (N=9555, 4% p, 27% He, 65% CNO, 4% Fe)

Method	Value	$\ln A_l^{th}$	N _l	d _l	p ₁ (%)	He _l (%)	O _l (%)	Fel
SMD	1.99	0.6	1266	0.1713	8.61	45.02	45.66	0
~13%								

above 32 EeV (N=2391, 0.7% p, 9% He, 61% CNO, 29% Fe)

Method	Value	$\ln A_l^{th}$	N _l	d _l	p _l (%)	He _l (%)	O _l (%)	Fe _l
SMD	1.46	-1.0	59	0.3665	1.69	45.76	47.46	5.
			~2%					

Mass-enhanced anisotorpies

Expected separation in dipole amplitude

Emily Martins

Mass-enhanced anisotorpies

To summarize

- Defined a method to separate data into *light* and *heavy* populations
- Created an 'Auger-like' simulation data set • Extended Auger mix model (with A-ordering) + spectrum
- Modeled an R-dependent dipole amplitude that reproduces the data
- Probed the feasibility of measuring mass effects on dipole amplitudes of A-distinct populations • + cross-checks between Universality and DNN reconstructions in the MEAD context

We concluded that...

We are ready to search for mass-enhanced anisotropy!

Additional material

• Photodisintegration -> primary CR horizon

Large Scale Anisotropy The dataset

Jan. 2004 - Dec. 2022						
 Energy ranges 						
1/32 EeV to	1/2 EeV	$\theta < 55^{\circ}$				
1/4 EeV to	4 EeV	$ heta < 60^\circ$				
above	4 EeV	$\theta < 80^{\circ}$				

Exposure

SD 750 array = SD 1500 array =

337 km² yr sr 81 000 km² yr sr 123 000 km² yr sr

Intermediate Scale Anisotropy The dataset

- Jan. 2004 Dec. 2022
- Energy above 32 EeV, $\theta < 80^{\circ}$
- Looser selection of events

Exposure

SD 1500 array = $135\ 000\ \text{km}^2\ \text{yr}\ \text{sr}$

Centaurus excess

- CenA \approx 4 Mpc away
- Scan in Centaurus region
- Significance: 3.9σ (ApJ2022) \rightarrow **4.0** σ (ICRC23)
- If signal is real, reach 5σ significance at (165 000 ± 15 000) km² yr sr (**2025 ± 2 years**)

Centaurus region

[EeV]

 \mathbf{E}^{th}

Threshold Energy,

PoS(ICRC2023) 252

330° 300° 240° 210° GC 270° longitude 10 15 20

The next step: combining observables The dataset

• Arrival directions

- >16 EeV
- $\circ\,$ Jan. 2004 to Dec. 2020
- Exposure 95 700 km² yr sr ($\theta < 60^{\circ}$) and 26 300 km² yr sr ($60^{\circ} < \theta < 80^{\circ}$)

• Energy

- >10 EeV
- \circ Jan. 2004 to Aug. 2018, $\,\theta < 60^\circ$
- Exposure 60 426 km² yr sr

• Shower-maximum depth distribution

- >10 EeV
- FD measurements

The next step: combining observables

- Energy, *X*_{max} and arrival direction
- Homogeneous background + Source catalogs (SBG / y-AGN) or single source (Cen A)
- Blurring of ~14° to 20° at a rigidity of 10 EV

- NGC4945 (SBG), or by Cen A

• SBGs model preferred at 4.5σ. Centaurus region contributes most • Overdensity in Centaurus region described either by

• In both, source contributes to ~3% of flux at 40 EeV

Summary

- Arrival direction anisotropies are relevant in different scales: • Intermediate scale: increasing excess in the Centaurus region (4.0 σ) Large scale: significant dipole structure in 8 to 16 EeV (5.7 σ) and > 8 EeV (6.9 σ) 0
- Strong indications of a transition from galactic- to extra-galactic origin of the observed anisotropies of cosmic rays in the EeV region
- Complementary information is being used to further investigate: \circ Combined fit with energy and X_{max} points to favorable astrophysical scenarios
- Next on probing the origin of CRs: propagation effects are mass- and charge-dependent **AugerPrime**

Thank you Muito obrigada

Emily Martins edyvania.martins@kit.edu

on behalf of the Pierre Auger Collaboration

spokespersons@auger.org

CosmicFlow-2 (Hoffman et al. 2018)

UNSAM

