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Determining radio signals in 
the presence of noise 



  

Mass composition study using the radio signals of RD

μ

Works well with inclined air showers (65° ≲ θ ≲ 85°) 

RD (Radio Detector) + 
WCD (Water Cherenkov Detector)

e
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Reconstructing the electromagnetic energy of the shower with RD 

1. E-field reconstruction
- Digital to analog conversion, upsampling, Hann window etc. 
- Unfolding of the response of the signal-processing chain (LNA, impedance   
  matching, filter amplifiers...)
- Unfolding of the antenna response (NEC-2) to get the E-field (EW, NS, N)

2. Calibrated signals 
- Decomposition of the E-field in the shower plane coordinate system
- Estimation of signal-to-noise ratio (SNR)  
- Estimation of the energy fluence   [eV m𝑓 −2 ], the energy deposit per unit area 

3. Geomagnetic energy fluence
- Analytic correction of early-late asymmetry 
- Parameterized subtraction of 
  charge-excess emission → 1-dim LDF  

4. Radiation energy 
-  LDF fit to estimate the geo radiation energy  Egeo (energy emitted in form of waves)
-  Correction on Egeo to compensate for the second-order scaling with the geomagnetic
 angle and air density at Xmax 

5. Elm energy
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Reconstructing the electromagnetic energy of the shower with RD
     (in a nutshell) 

Energy fluence 
      𝑓 [eV m−2 ]

LDF fitting

energy deposit per unit area 
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Radio background at Auger 
 

How do we determine the signal (fluence) from the noisy radio measurements? 
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Current signal and signal uncertainty estimation (Offline)
 

Search signal window: 
[3550, 3670] ns

 

noise window: 
[6000,8000] ns

100 ns signal window around the peak

 

noise windowsignal window

  Estimation of the energy fluence [eV m−2] 

The method breaks down at low signal-to-noise ratio  



  

 Signal-to-noise ratio cut at station level 
     SNR < 7 (10)

The uncertainties on the reconstructed 
electromagnetic energy (LDF fitting by    min.) 
are underestimated  

We want to achieve a better estimation of the fluence and its uncertainty exploiting 
a robust mathematical and statistical background.

Current signal and signal uncertainty estimation (Offline)
 

(backup)
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Our measurement can be expressed as:
  sum of constant known phasor s and a random phasor sum  

Signal estimation in presence of noise with the Rice distribution 

Figure from Harm Schoorlemmer

Proof and details:  Chapter 2.9 from J. W. Goodman, Statistical Optics (2015)

CAVEAT: Radio measurements have amplitude and phase!

Marginal density function for amplitude only:

with I0 modified Bessel function 1st kind of 0-order
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Gaussian distribution
Large signal

Rayleigh distribution
No signal

Signal estimation in presence of noise with the Rice distribution 

Figures from Harm Schoorlemmer
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1. Find the Hilbert peak

2. Hanning window around the peak

3. Clipping in the signal window

4. FFT of the clipped trace

5. Select frequencies in [30-80] MHz 

Signal estimation in presence of noise with the Rice distribution 

a(f) amplitudes of FFT in the signal window
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Signal estimation in presence of noise with the Rice distribution 

N times

1. N noise windows all over the trace

2. In each window:

3. Mean value of each frequency

  

       noise level of each frequency 

Rayleigh 
distribution

- Hanning, Clipping
- FFT, select frequencies in 30-80 MHz
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By storing in Offline the parameters
we have access to the likelihood L(s).

a(f),  

Get the estimators of s(f) by maximizing L(s)
   (it can be zero!) 

    

Once we get the fluence likelihood, it can be 
used in the LDF fitting procedure instead of     
     minimization → uncertainties estimation
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Signal estimation in presence of noise with the Rice distribution 



  

Testing the Rice distribution method for RD 

2000 proton/iron qgsjet sims. (RdIdealGrid)
  

RD traces from EA stations (2021-09 until 2022-08)
cleaned from the showers signals, traces from the 
stations with broken LNA, duplicated traces and 
partially from corrupted traces

Simulations
Noise library

E-field traces - EW polarisation 
Excluding stations strongly affected by thinning

  Simulated 
measurements

Offline current methodRice method

RECONSTRUCTION
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Testing the Rice distribution method for RD 

20%
10%

Median of the bins and iqr
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Testing the Rice distribution method for RD 

20%

Similar results for iron simulations
(backup)
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Conclusions & Outlook

- The fluence estimation using the Rice distribution method shows a smaller bias than 
the actual Offline method for low SNR values, both for proton and iron simulations  

- At higher SNRs, the bias is comparable

- By storing the Rice parameters we have access to the Likelihood

- LDF fitting using the Rice fluence Likelihood will provide uncertainties 

- For backward compatibility, we will store also the uncertainty on the fluence obtained 
by propagating the ones on the s estimators (work in progress, see backup)
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Backup



  

Testing the Rice distribution method for RD 

20%
10%
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Testing the Rice distribution method for RD 

20%
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Testing the Rice distribution method for RD 

SNR:  24.6 

ratio:  85.4
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Testing the Rice distribution method for RD 

Cut on timing information

|(Tpeak)REC - (Tpeak )TRUE | < 2ns 

in order to compare the goodness of 
the methods independently of the 
PulseFinder 
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Noise windows and Rayleigh distributed noise assumption

Cut of outliers in the frequency bin

Rayleigh distributed bins?



  

The relative uncertainties do not 
match the resolution → 
uncertainties underestimated

Resolution: how good we reconstruct 
the energy, std of Eem /EemMC in 
zenith bins

Goodness of the LDF fits: 
too small p-values→ uncertainties
probably underestimated   

Reconstructed Eem and uncertainty

Felix Schlüter’s work
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Uncertainty model derived in C. Glaser’s 
PhD thesis

Signal uncertainty estimation 
(Offline)

uncertainty due to noise after 
subtracting it, assumes amplitudes are 
superposition of signal and white noise 
Gaussian distributed  

5% uncertainty on the amplitudes

(antenna variation)
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Bias of the s estimators 

Else:

What we actually need to know to 
understand the Likelihood estimator 
and its bias:

Note that the fluence will be always positive 
(                   in principle possible!)
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 N=10000 

s=0.5

Peak of estimators at 0 introducing bias

Bias of the s estimators 
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Relative bias >> 10 % Relative bias < 5 %

 Verify how relevant the bias is for the fluence  

→  Large set of simulations + noise 
(see previous slides)

        

Bias of the s estimators 

Station  
  SNR

Trace SNR

Trace SNR

Trace SNR

… 

…      
         

… 
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Once we get the fluence likelihood, it can be used in the LDF fitting procedure instead of          
minimization → uncertainties estimation

For backward compatibility, we want to store in Offline the fluence and its error (e.g. get the uncertainties 
of the estimators of s(f) and propagate them to the fluence).

Signal and signal uncertainty estimation with the Rice distribution 

k=1

Gaussian approximation:               

In non Gaussian approximation we would need to 
define asymmetrical errors to have a 68% interval

(backup)
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Ideally we want to define a 68% interval around the estimator.
Looking at the cdf of the normalized Likelihood function we can distinguish two main cases:

- Gaussian approximation (cdf of the estimator ~ 50%): symmetrical errors

Estimators uncertainty  
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Ideally we want to define a 68% interval around the estimator.
Looking at the cdf of the normalized Likelihood function we can distinguish two main cases:

- Gaussian approximation (cdf of the estimator ~ 50%): symmetrical errors

- Non-Gaussian: asymmetrical errors

 

Estimators uncertainty  

0%<cdf of the estimator <50% cdf of the estimator=0%
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Ideally we want to define a 68% interval around the estimator.
Looking at the cdf of the normalized Likelihood function we can distinguish two main cases:

- Gaussian approximation (cdf of the estimator ~ 50%): symmetrical errors

- Non-Gaussian: asymmetrical errors

  But, we would like to store 1 single value (symm.) in Offline

There’s no analytical form of the cdf available → numerical integration 
- discrete n values
- integrals in [i, i+1] , with i=0,..,n
 

 

Estimators uncertainty  

31



  

Estimators uncertainty

Hessian of the cost function
 

Gaussian approximation:

k=1
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Gaussian approximation

The two methods are equivalent (as it should)

Estimators uncertainty: Hessian vs cdf  
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Non-Gaussian approximation

The two methods diverge

Estimators uncertainty: Hessian vs cdf  

(symm.)
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Estimators uncertainty: Hessian vs cdf  

cdf 

Hessian
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Estimators uncertainty  

The coverage fluctuate around 68% where the Gaussian approximation is valid. 
Large bias values mostly correspond to an overestimation of the error.

Hessian

36



  

Correlation: -0.091 Correlation: 2.49e-05

Correlation of the amplitudes of the signal 
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Gaussian approximation of L(s) 
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Rice method: the algorithm(s) 

1. root finder between positive and negative value of dL/ds
2. minimizing -L with bounded method between smin, smax
3. run one of the previous methods, fit s vs a →in principle faster (less accurate...)
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For the three of them, we need to 
study the solutions space 
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Rice method: the algorithm(s) 

Second derivative to find min/max of the first derivative 
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