

Current status of PhD studies

Tobias Schulz

Annual meeting of DDAp and HIRSAP – 2023

Goal: Testing hadronic interactions

- Standard approach: Muons
- "New" possibility: Subluminal particles (probably Neutrons)
- → First need to resolve problems in data & improve its quality

Updated baseline algorithm

- Resolving LG/HG systematics
- Updated **baseline algorithm** to create physically motivated baseline
- Determined **decay time** of recovery UUB undershoot

600

HG_{max}/adc

×××××××××

800

1000

OG algorithm KG algorithm

0.10

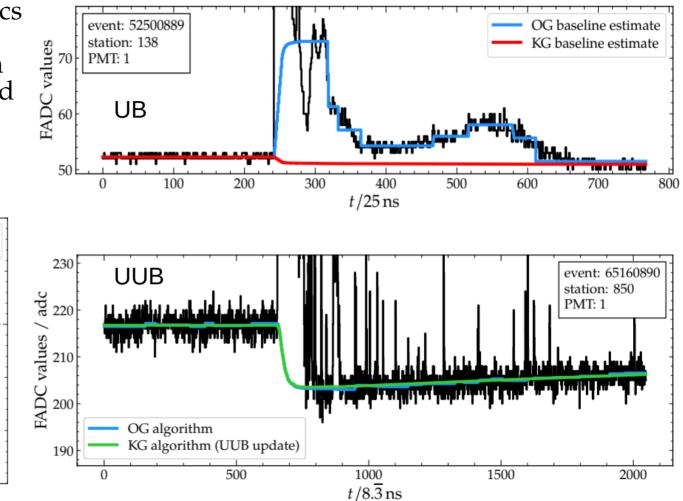
0.05

 $\langle S_{\rm LG}/S_{\rm HG} \rangle - 1$ $\stackrel{0}{\sim}$ 000

-0.10

-0.15

X


×

200

400

 \times

X

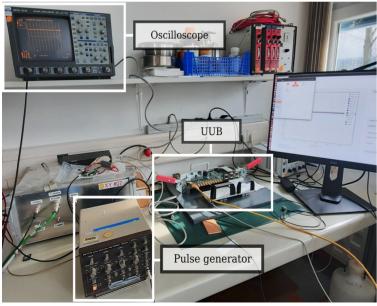
Outline

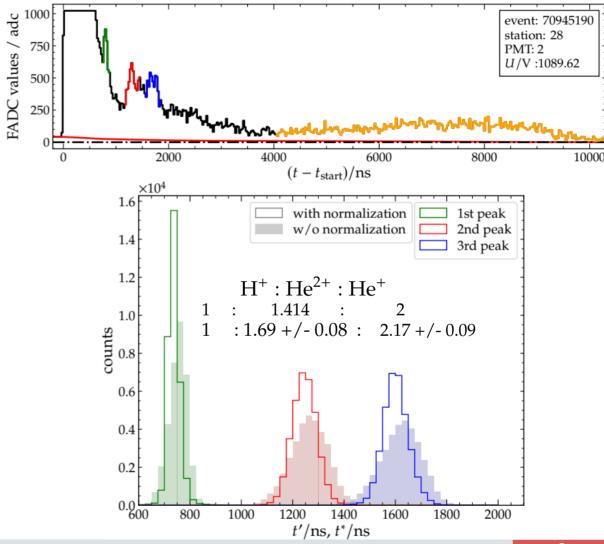
Improving quality of data Done

- Rework of baseline algorithm for UB and UUB
- Correction of residual gain ratio bias
 - → Significant reduction of systematic error in signals

- For now: analysis with simplifying assumptions to probe impact of changes to signals
- maybe return to this after neutron analysis
- possibility of improving muon signal resolution with shielding

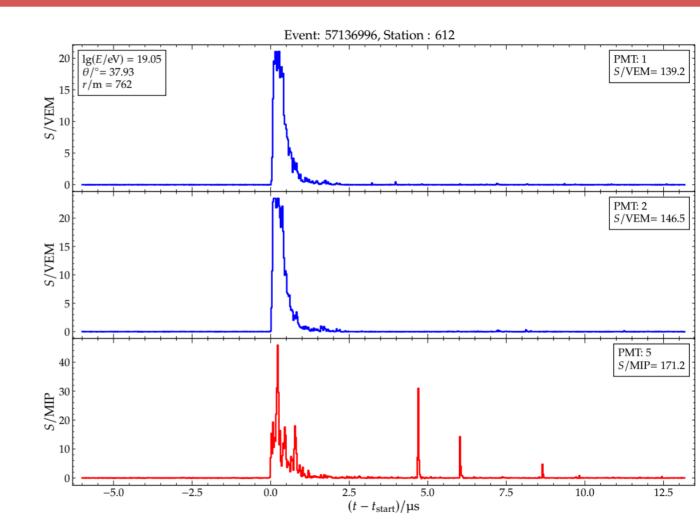
Subluminal Pulses Ongoing

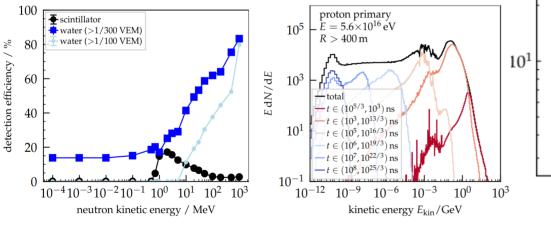

- Extensive analysis of late pulses in WCD
- Verification that Afterpulsing plays significant role for WCD
- Characterization of subluminal pulses (possibly late neutrons) in SSD traces

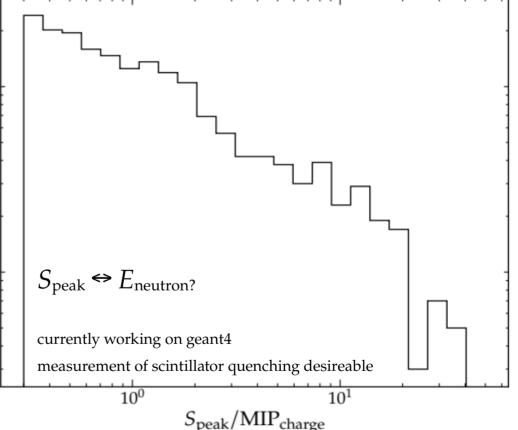


Afterpulsing

- Analysis of **peak structures** in saturated traces
- Lab measurements to rule out electronics as cause
 - → Peaks in WCD are afterpulsing effects




Late pulses


- **SSD** traces contain late pulses
- **Characterization** of the late pulses
- Rule out detector effects, e.g. **afterpulses** (APs)
- Subluminal pulses (SLPs), e.g. **neutons**?
- → Get energy spectrum and LDF

Towards energy spectrum: Charge of late pulses

- Histogram the signal of single pulses that arrive past 5µs as first step towards **energy spectrum**
- Neutron **simulations** needed to get an ¹⁰² energy spectrum from neutron signals
- Full **time-distribution** of late pulses **unknown**

Towards neutron LDF: Frequency of pulses

Martin Schimassek, ICRC 2023

/ 107

• Count average amount of candidate $18.0 \le \log(E/eV) < 18.5$ candidates 10^{0} (or background) peaks per trace $18.5 \le \log(E/eV) < 19.0$ background $19.0 \le \log(E/eV) < 19.5$ theory 1 accidental muon every 20 traces • Account for **search-window** size & 10^{-1} normalize by detector area $10^{18.5}$ 10^{-2} • Roughly **linear scaling** with energy MHz m² expected at Auger depth neutrons $E = 5.6 \times 10^{14} \text{ eV} (\times 10000)$ muons $E = 5.6 \times 10^{14} \text{ eV} (\times 10000)$ 12.5 $(E > 10 \,{\rm MeV})$ $= 5.6 \times 10^{15} \, \text{eV} \, (\times 1000)$ $E = 5.6 \times 10^{15} \, \text{eV} \, (\times 1000)$ 10^{-3} $/ 10^{7}$ $E = 5.6 \times 10^{16} \text{ eV} (\times 100)$ $E = 5.6 \times 10^{16} \text{ eV} (\times 100)$ $E = 5.6 \times 10^{17} \text{ eV} (\times 10)$ 10.0 $E = 5.6 \times 10^{17} \text{ eV} (\times 10)$ $E = 5.6 \times 10^{18} \, \text{eV} \, (\times 1)$ primary $-E = 5.6 \times 10^{18} \, \text{eV} \, (\times 1)$ fluence per primary photon showers -- photon showers 7.5 $30 \le \theta / \circ = 40$ per 5.0 fluence j 10^{-4} 2 2.5 400 600 800 1000 1200 1400 200r/m0.0 0 2501000 250 500 750 1000 500 750 0 0 atmospheric depth X / (g/cm^2) atmospheric depth $X / (g/cm^2)$

≣ Zonda wind

Article Talk

From Wikipedia, the free encyclopedia

Zonda wind (Spanish: *viento zonda*) is a regional term for the foehn wind that often occurs on the eastern slope of the Andes, in Argentina.

文A 19 languages ~

Tools 🗸

