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●  Finished my undergraduate studies in 2019
 in Bahia Blanca

● Worked as a Machine Learning model validator 
(1.6 years) and data scientist (6 months).
For the most part engaged in fraud detection 
(small signals hidden in background).

● Started my PhD and joined the DDAp and 
HIRSAP in Abril

 

About me...
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Motivations:

Why photons?

● Tracers of the highest-energy processes 
in the Universe

● Point back to their sources

● One of the “messengers” in the Multi-
Messenger approach

The objective:

Estimate or constraint the diffuse photon

 flux at low energies → 

Photon search with the Underground Muon Detector (UMD)

Auger Coll., ApJ 933 125, 2022
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Multi-variate analysis in photon  searches

   González N., PhD thesis, 2018

● Combined with Fisher’s Linear Discriminant 
Analysis 

Auger Coll., ApJ 933 125, 2022

● Event observables sensitive to photon signatures
● Combined with Boosted Decision Trees
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Where we are headed 

Machine Learning

Deep 
Learning

Our approach – Law of parsimony (Occam’s razor)

Simple models

Logistic Regression, Gaussian Naive Bayes,
 Decision trees, KNNs, etc. 

Ensemble methods

Deep Learning
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Current strategy - Embracing uncertainty

● Represent events in tabular form

● Employ both event-level observables 
and station-level observables

● LDF-like observables are defined by 
binning the distance to the shower axis 
according to the core resolution



7
Ezequiel E. Rodriguez – ezequiel.rodriguez@iteda.cnea.com.ar

The dataset

Showers are from the Prague Library (GAP 2018-043)

 

Hadronic models:  EPOS-LHC + FLUKA

Conservative background: protons with muon-deficit

Quality Cuts:

●  
● 

Events: approx. 45k (balanced classes) 

Missing values: 70%

Initial stratified split

Training set (2/3 original dataset)
● Model training 
● Hyperparameter tuning
● Model Selection

Testing set (1/3 original dataset)
● Unbiased Performance Estimation
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Feature extraction

Normalized muon densities 

Parameters are fitted from a separate

set of CORSIKA simulations for fixed 

combinations of            and 

Distributions from Offline reconstructions
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The best contender – eXtreme Gradient Boosting (XGBoost)

● Introduced in 2016 (22k citations until last week) 
● Highly optimized tree-based ensemble
● Handles missing values with Sparsity-aware 
Split Finding

 

Chen, T., & Guestrin, C. (2016, August). Xgboost: A 
scalable tree boosting system.
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Model Training 

Stratified 5-fold Cross-Validation (CV)
Low-level optimization task

   output

Mean Area Under the Curve (AUC) for 
Background Rejection (BR) Vs Signal 
Efficiency (SE)

Savina, P., Bleve, C., & Perrone, L. , PoS (ICRC2019), 414.
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Training – Hyperparameter tuning – Model selection

Model Training
with 5-fold CV

Model Selection
Select a set of features from the BO distributions of AUCs

Sets:

Number of trained
Classifiers
3 x 1100 x 5 = 16500

Hyper-parameter tuning

What is the best configuration for XGBoost? 
Too many hyperparameters (non-trainable)

Bayesian Optimization (BO)

Meta-optimization in a 

high-dimensional space (1100 trials)

BRvsSE AUC
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Out-of-sample performance estimation with bootstrap

As we contemplate events with lower primary energy performance drops
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Out-of-sample performance estimation with bootstrap

As we contemplate events with higher zenith angle performance drops
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Summary and Outlook

● Developed observables as input for to MVA classifiers

● Initial model development with “traditional” Machine Learning models

● Estimation of model performance
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Backup slides
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Bayesian Optimization - Tree Parzen Estimator (1)

- Sequential  Model-Based Optimization(SMBO) -> Tree Parzen Estimator (TPE)

Some steps later...
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Bayesian Optimization - Tree Parzen Estimator (2)

●Train the model with x*
●Append your metric to the search history
●Update likelihood

- Warm-up Stage with random trials

Initial kernel density estimation

Update likelihoods

Side Notes

●The hyperparameter search space follows a 
tree-like structure

●Likelihoods are modeled like:

● Mix of truncated gaussians for continuous 
hyperparameters

● PMFs for integer and categorical 
hyperparameters
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Results from Bayesian Optimization
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