

Reconstruction of muon LDF using ADC channel of UMD

Varada Varma Kizakke Covilakam

Director: Dr. Alberto Daniel Supanitsky Co-director: Prof. Dr. Ralph Engel Supervisor: Dr. Markus Roth

Annual HIRSAP Meeting 11 November 2022

Reconstruction of MLDF

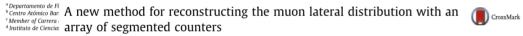
CORSIKA simulated showers \rightarrow Average MLDF + Muon time distribution

Toy simulations CORSIKA showers library of fixed energy EPOS-LHC and FLUKA.

Primaries : Fe, Pr Zenith angles 30°, 45° Energy range logE [17.5,19] in steps of 0.25

Binary data simulation

Underground muon counters as a tool for composition analyses


A.D. Supanitsky ^{a,d,*}, A. Etchegoyen ^{a,c}, G. Medina-Tanco^d, I. Allekotte^b, M. Gómez Berisso^{b,c}, M.C. Medina ^a

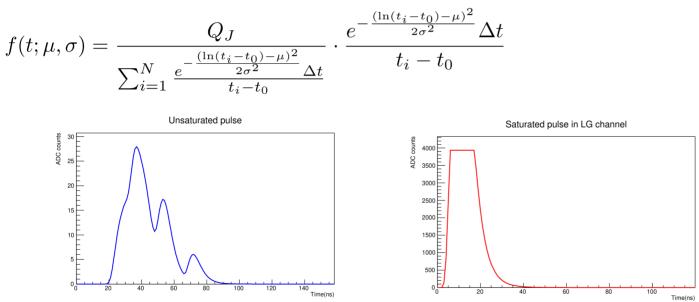
^a Departamento de Física, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, Buenos Aires, Argentina ^b Centro Atómico Bariloche e Instituto Balseiro, CNEA-UNC (8400) San Carlos de Bariloche, Argentina ^c Member of Carrera del Investigador Científico, CONICET, Argentina ^d Instituto de Ciencias Nucleares, UNAM, Circuito Exterior S/N, Ciudad Universitaria, México D.F. 04510, Mexico • Underground muon counter simulated (with pile up correction)

Binary data simulation

Astroparticle Physics 29 (2008) 461-470

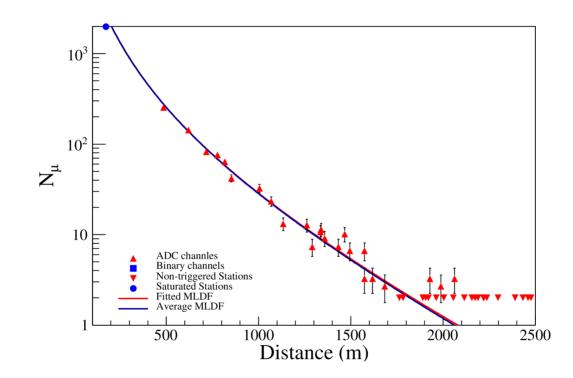
D. Ravignani^{a,*}, A.D. Supanitsky^b

^a ITeDA (CNEA, CONICET, UNSAM), Buenos Aires, Argentina ^b Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Buenos Aires, Argentina


Binary data simulation

Astroparticle Physics 29 (2008) 461–470				
A.	Contents lists available at ScienceDirect Astroparticle Physics 65 (2015) 1-10			25 ASTROPARTICLE
ELSE	633160	ler	Contente liete available at ScienceDirect Astroparticle Physics 82 (2016) 108-116	2
Unde A.D. S	ELSEVIE	ELSEVIER	Contents lists available at ScienceDirect Astroparticle Physics journal homepage: www.elsevier.com/locate/astropartphys	Astronathele Physics
^a Departar ^b Centro A ^c Member ^d Instituto	A new 1 array of D. Ravign. ^a TEDA (CNEA, C ^b Instituto de Asi ^c DDA (CNEA, CONCET, UNSAM), Buenos Aires, Argentina ^b Institute de Asi ^c DDA (CNEA, CONCET, UNSAM), Buenos Aires, Argentina ^b Institute de Astronomia (* Fisca del Espacio (URF, CONCET-UBA), Buenos Aires, Argentina			CrossMark

Current reconstruction method \rightarrow profile likelihood method with the detector timing in the counter mode.


ADC data Simulation

• ADC signals

Multiple signals arriving at different times added to get a single pulse.

Sample Event

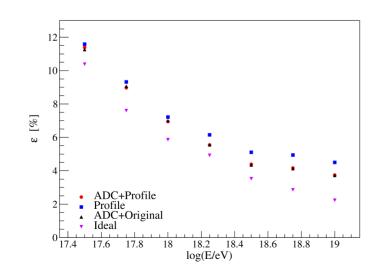
Sample Event at $log_{10}E = 19$ for Fe primaries at 30° zenith angle

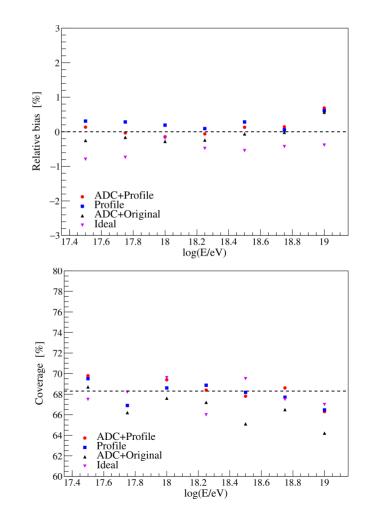
Reconstruction of MLDF

- For each sampled event, the distance of the detector to the shower axis and arrival time of each muon are obtained.
- The average LDF \rightarrow expected number of muons (µ) \rightarrow actual number of muons
- The LDF is fitted to the detector data simulation by either minimizing the χ^2 or by maximizing a likelihood function.

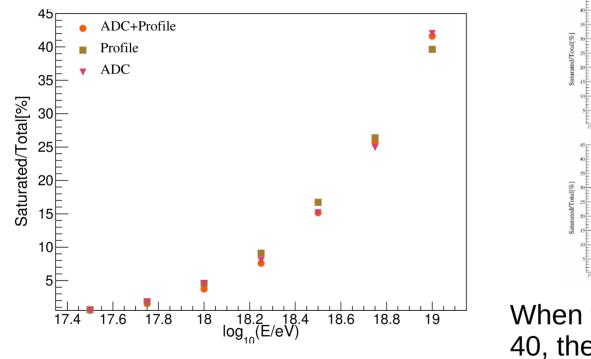
Reconstruction of MLDF

- For each event $\mu(r)$ was adjusted using a second Kascade Grande like muon LDF.

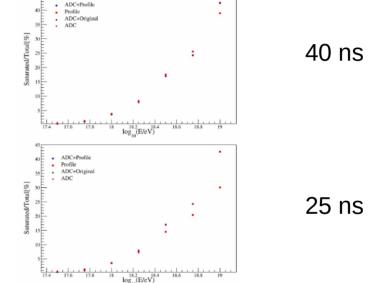

$$\mu = \mu_0 \frac{g(r)}{g(r_0)} \qquad \qquad \alpha = 0.75 \\ r_0 = 450 \text{ m} \\ r_1 = 320 \text{ m}.$$


 μ_0 and β are adjusted by minimizing the function

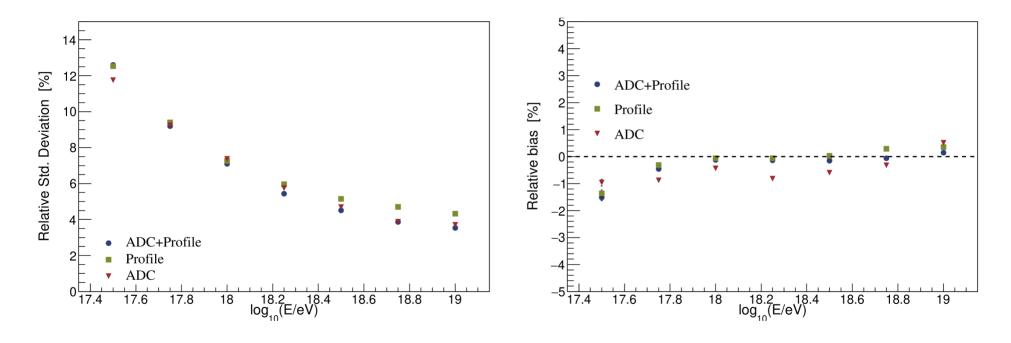
$$-2\ln(L_{fit}(\mu_0,\beta)) = -2\sum_i \ln L_i(\mu(r_i,\mu_0,\beta))$$


Recap

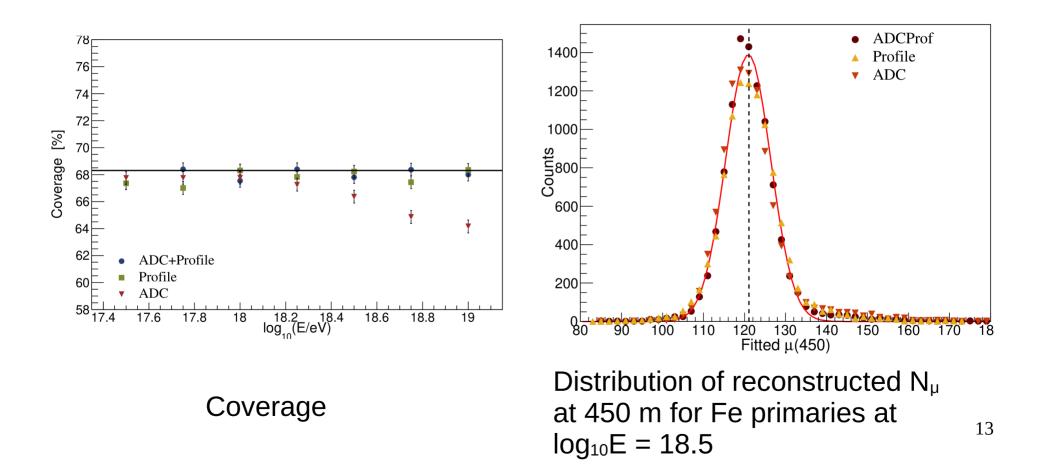
- Reconstruction methods used:
 - Combination of ADC & Profile
 - Combination of ADC & Original
 - Profile likelihood method
 - Ideal counter reconstruction method



Reconstruction parameters



Saturated fraction


When the bin width increases to 40, the counter saturates faster. ADC is independent of time bin used.

Reconstruction parameters

Relative standard deviation

Bias

Summary

- The binary mode implemented in AMIGA is very efficient.
- Including the ADC channel,
 - The small bias and the low standard deviation achieved allows for a good estimation of $\mu(450)$.
 - does not improve the saturated fraction of stations.
 - ADC is not affected by pile-up effect or corner clipping effect and is independent of time bin used. So the method increases the precision of the UMD.