Muography developments within the MuAR project: advances in simulations and new detectors designs

H. Asorey^{1,2} and A. Almela¹ for the MuAr group

A. Almela, H. Asorey, R. Calderón-Ardila, M. Gómez-Berisso, N. Leal, R. Mayo-García, L. Otiniano C. Sarmiento-Cano, A.

Sedoski-Croce, I. Sidelnik, D. Silva, A. Taboada, C. Varela, J. Vega and A. Vesga-Ramirez.

¹ Instituto de Tecnologías en Detección y Astropartículas, CAC-CNEA/CONICET/UNSAM, Buenos Aires, Argentina ² Departamento Física Médica, CAB-CNEA/CONICET, Bariloche, Argentina

hernan.asorey@iteda.cnea.gov.ar

Muography developments within the MuAR project: advances in simulations and new detectors designs

Background

Simulation program

Detectors designs

Background: LAGO, AMIGA and MuTe

AMIGA is a buried muon counter designed to study the UHECR composition at the Pierre Auger Observatory by measuring the EAS muon distribution density at ground

operating Active

MuTe is a two-panel, 900px and hybrid muographer,

scintillators & WCD, designed, funded and built in Latin

America

(L. Núñez et al, 2022)

LAGO is a giant network of astroparticle WCD detectors, currently operating in 11 countries. The LAGO network measures the time-evolving flux of secondary particles produced by the modulated flux of GCR

Muography -> the basis

- Suppose you have an object with an unknown density profile, then...
 - ... measure the directional muon flux through this object
 - ... and compare with the muon reference flux
 - \rightarrow you get the directional opacity of this object [g/cm $rac{1}{12}$
- Additionally...
 - ... obtain the external geometry of the object
 - \rightarrow and calculate the directional interaction distance [cm]
- Finally, from...
 - directional opacity
 - directional interaction distances
 - \rightarrow you get the internal density profile along muon propagation direction

Muography -> the basis

Muography developments within the MuAR project: advances in simulations and new detectors designs

Background

Simulation program

Detectors designs

from primary flux to applications

primary flux integration

For each primary, we need to integrate its spectrum to get the expected (Poissonian) number of primaries at the top of the atmosphere $N_{t,S} = \int_t \int_S \int_\Omega \int_{E_p} j_0(E_p, Z_p)^{\alpha(E_p, Z_p)} dt \, dS \, d\Omega \, dE$ We integrate:

full spectra, 1 < Z < 26

hemisphere, $0 \leq heta \leq \pi/2, -\pi \leq \phi \leq \pi$

energy range, $(R_C \times Z_p) < E/GeV < E_{\max}$ R_c is the local, time-dependent, geomagnetic rigidity cut-off E_{\max} depending on application

M. Suárez-Durán, H. Asorey and L.A. Núñez, Space Weather, (2018), DOI:10.1002/2017SW001774

M. Suárez-Durán, H. Asorey and LA Núñez, Space Weather, (2018), DOI:10.1002/2017SW001774

Elapsed time since May 1st 2005, 00:00 (UTC, h)

local atmospheric effects

Monthly-averaged or instantaneous local atmospheric profiles from GDAS

Our secondary flux simulation framework

C. Sarmiento-Cano et al. (2019), DOI:10.22323/1.358.0412; Hernán Asorey et al., Astropart. Phys., in preparation

Cloud-based implementation

Any HPC provider assigns resources to the cloud based implementation: cores, memory and local storage

aws

Microsoft

Muography and Underground LABs

One-year simulated flux of secondary particles at ground level (~1.5 kCPU·h/site)

High-momentum (p_s>p_{cut}) secondary particle flux at different sites around the World

A.J. Rubio-Montero et al (ICRC 2021) DOI:10.22323/1.395.0261

Meiga, a dedicated framework used for muography applications

A. Taboada and C. Sarmiento for the MuAr group - Poster #26 - Nov 25, 2021, 15:30 CET - https://indi.to/N4Rqh

A. Taboada et al, this conference

Meiga workflow

Poster #26 - Nov 25, 2021, 15:30 CET

Meiga example: muon flux propagation through 500m of rock impinging on a single *Musaic*' tile

Expected pulse at each SiPM

Muography developments within the MuAR project: advances in simulations and new detectors designs

Background

Simulation program

Detectors designs

Modulus, our modular design

First functional prototype (2021)

Technology transference from astroparticle detection to muography

Modular assembly, calibration, testing and coincidence detection

Single or double-head configurable signal acquisition electronics, depending on possible targets characteristics

Mining prospecting applications Detector deployment at selected site planned for 2022Q1

New detector geometry optimized for underground measurement

C. Ardila et al, ICES-16 (2021)

Next phase: Musaic Portable, fully autonomous and interconnectable (2x2) to (6x6) pixel tiles

n=2-6, n² pixel fully autonomous tiles 2n SiPM-based tiles

wireless synchronization

e.g., a neutrino experiment in ANDES

18000 m³ of ultra purified water + r:9 m copper sphere

A muography-based muon-veto idea

- Cherenkov radiation at water
- Sphere tessellation with
 - Mudulus single panels
 - Musaic mini-panels
- We are starting the R&D phase of the muon veto of several ANDES experiments
- First tests at Sierra Grande and Casposo

Conclusions

Fully integrated simulation sequence **Configurable and** autonomous detector designs: portables, modulars and/or teseleables detectors Starting field acquisition in 2022Q1

Muography developments within the MuAR project: advances in simulations and new detectors designs

Background

Simulation program

Detectors designs

¡Muchas gracias!

