

New PhD student

Nice to meet you all!

Max Büsken, Supervisors: Ralph Engel, Tim Huege HIRSAP Workshop 2020

PhD with Auger/Cosmic Rays

- Radio Upgrade of the Pierre Auger Observatory
- 1) Absolute calibration of the new antennas
- 2) New electric field mills for thundercloud monitoring
- 3) Muon number measurements with RD + particle detectors

- Exciting topics of physics ahead
- Plus: Joining the HIRSAP community

Absolute Calibration of the Antennas

- New radio antennas on each SD station
- Calibrate them relatively and absolutely
 → absolute: Use Galactic radio emission
 (strongest background)

.045

- Propagate sky models through signal chain
- Compare with measured noise traces m m au cal. constants $C\left(
 u
 ight)$

Electric Field Monitoring

 Thundercloud conditions have significant influence on radio signals

→ Need to monitor to see, if radio signals are reliable

Electric Field Mills

- Two stations in the AERA array with E-field mills
- Qualitative thunderstorm flagging → can do more?

- Plan: set up 5 new stations
- 4 at the FD sites
- 1 central station

Later: Muon number measurements

- Observe highly inclined air showers with new RD
- Determine muon number and spread from combined WCD + RD measurements

Thanks!

Before my PhD at KIT

- Neutrino group at RWTH Aachen
- JUNO experiment
- Supernova neutrino studies

20 kt Liquid Scintillator

Master thesis: Spectrum Unfolding

Absolute Calibration of the Antennas

- Process galactic emission through antenna signal chain
- Add noise contributions at given steps and propagate as well
 - Antenna model itself
 - Low-noise amplifier
 - (Coaxial cable)
 - Receiver Unit: bandpass filter + ADC noise
 - ⇒ Simulation of expected background + noise

Absolute Calibration of the Antennas

- Result: Modeled background signal $P_{sim}(t_{LST}, \nu) = P_{sim}(t_{LST}, \nu; N_{LNA}, N_{RCU}, N_{ADC}, S)$
- Compare to measured noise traces $P_{
 m meas}\left(t_{
 m LST},\nu
 ight)$
- Minimize difference to solve for noise contributions
- Calculate calibration constants $\,C\left(\nu
 ight)$