# Progress in Air Shower Universality

## Max Stadelmaier

#### R. Engel, M. Roth, F. Sanchez, D. Schmidt, D. Veberič HIRSAP meeting - November 2020



time spent



#### flashback

- → Nov 18 Buenos Aires very first steps, work proposal
- → Nov 19 Karlsruhe idea of universality-v2, a lot of coding
- → Nov 20 online finished model in an almost finished framework



Progress in Air Shower Universality

Max Stadelmaier R. Engel, M. Roth, F. Sanchez, D. Schmidt, D. Veberič HIRSAP meeting - November 2020

#### mechanics of the code



#### mechanics of the code



## the status of universality

signal size model

| WCD (& ASCII) | M. Ave     |
|---------------|------------|
| WCD & MD      | J. Hulsman |

signal timing model

| start & WCD quantiles | M. Ave     |
|-----------------------|------------|
| WCD shape             | A. Schulz  |
| WCD & MD shape        | J. Hulsman |

#### Offline reconstruction

Bariloche M. Ave Karlsruhe A. Bridgeman + revisited model for WCD & SSD

 new start time model,
 new trace shape model for WCD & SSD



new but simple reconstruction using all of the above

## innovations in universality

- $\rightarrow$  code is flexible and is designed to be maintainable
- → "new" profile function for lateral distribution of particles true NKG, takes 1 instead of 4 extra parameters
- → analytical expression for projected shower age, DX, using quasi-log-linear atmosphere very fast, quite accurate
- → completely new formalism for the signal timing model stay tuned!







#### signal size model



 $S_{e\gamma} + R_{\mu} \left( S_{\mu} + \alpha S_{e\gamma(\mu)} + \beta S_{e\gamma(\pi)} \right) = S_{\text{total}}$ 

#### signal size model



behaviour of signal size with respect to  $R_{\mu}$  is independent of hadronic interaction model or primary particle

it's universal

#### signal size model



#### new time model

using DX and a rectilinear connection  $L_i$ , each point on the shower axis is associated with a point in time

ct



#### new time model



#### new time model



#### using

X

max

$$c \simeq 95\% c_0$$
  
 $\Delta X \simeq 600 \,\mathrm{g} \,\mathrm{cm}^{-2}$ 

plus parabolic shape correction, the prediction of the arrival time describes the simulation data quite well

#### next step for new time model

- → find absolute time scale with at least one trace quantile
- → fit the trace shape using uncertainty model w.r.t.  $X_{max}$
- → use

$$q_{X_{\max}} = 1 - \frac{\frac{\lambda}{X_{\max}}\Gamma(\frac{X_{\max}+\lambda}{\lambda}, \frac{X_{\max}}{\lambda})}{\Gamma(\frac{X_{\max}}{\lambda}, 0)} \simeq 0.4$$

instead of  $q_0$ 

200 200 • p  $\mu(X_{\rm max}) = 10 {\rm g/cm^2}$ • p  $\mu(X_{\rm max}) = 9 {\rm g}/{\rm cm}^2$ △ Fe △ Fe  $\sigma(X_{\rm max}) = 32 {\rm g}/{\rm cm}^2$  $\sigma(X_{\rm max}) = 37 {\rm g/cm^2}$ 150 150  $\mu(R_{\mu}) = -0.02^{\bigtriangleup}$  $\mu(R_u) = 0.00$ using only the  $\sigma(R_{\mu}) = 0.10$  $\sigma(R_{\mu}) = 0.13$ 100 100 arrival time and 50 50 signal the size,  $\Delta X_{\rm max}/{\rm g\,cm^{-2}}$  $\Delta X_{\rm max}/{
m g\,cm^{-2}}$  $R_{\mu}$  and  $X_{\max}$ can 0 already be es--50-50for very timated ₽... vertical showers -100-100 $\theta < 20^{\circ}$  $\theta < 20^{\circ}$ -150-150 $\lg(E/eV) = 19$ lg(E/eV)= 20-200-2000.5 0.5 -1.0-0.50.0 1.0 -0.50.0 1.0-1.0 $\Delta R_u$  $\Delta R_{\mu}$ 



p Fe mix Sibyll2.3c lg(E/eV) = 19



p Fe mix Sibyll2.3c lg(E/eV) = 19



p Fe mix Sibyll2.3c lg(E/eV) = 19

#### summary

→ universality revisited, now more physics driven and consistent than previous work

 $\rightarrow$  new WCD and SSD signal and time model developed based on dense station information

#### outlook

→ calibrate reconstruction using  $X_{max}$  from Hybrid data → reconstruct  $R_{\mu}$  and  $X_{max}$  using combined WCD and SSD data

#### Thank you for your attention!

backup

using start time formalism to map longitudinal profile to time trace:

$$n(DX) \to I(DX(t))$$
$$I(t) = \exp\left[-\frac{X_{\text{vg}}^2}{2X_{\text{max}}\lambda} \left(1 - e^{\frac{r^2}{2h_{\text{s}}ct} - \frac{ct}{2h_{\text{s}}}}\right)^2\right]$$

post-diction of the trace shape and new trace model, including shape uncertainty

