

ISABEL GOOS, TANGUY PIEROG, XAVIER BERTOU 27/11/20

STUDY OF $X_{max} - N_{\mu}$ ANTICORRELATION

MOTIVATION

Theoretical interest: deduce something about physical parameters of the shower (mainly first interaction) and thus understanding the spread and the anti-correlation

Practical interest: incorporate this new knowledge in the reconstruction of showers

INTERESTING PARAMETERS

 $+E_0 \cdot f_E^1(only LP) \cdot (f_{Ehad}^{HM})^{n_{LP}-1}$

 $p_2 = E_0 \cdot f_{Ehad}^1(with LP) \cdot (f_{Ehad}^{HM})^{n_{(X_{max} - X_{first})} - 1}$

INTERESTING PARAMETERS

$$p_3 = N_{had}^1 \qquad \qquad p_4 =$$

had —> charged pions and kaons, nucleons, lambdas, sigmas, ...

 $= E_{had}^{1}$

 $p_5 = n_{LP}$

ANALYSIS OF p_2 **AND** p_3

 $p_2 = E_0 \cdot f_{Ehad}^1(with LP) \cdot (f_{Ehad}^{HM})^{n_{(X_{max}-X_{first})}-1}$

$$p_3 = N_{had}^1$$

CORRECTING FOR *p*₂

 $p_2 = E_0 \cdot f_{Ehad}^1(with LP) \cdot (f_{Ehad}^{HM})^{n_{(X_{max} - X_{first})} - 1}$

CORRECTING FOR *p*₂

Rotated anti-correlation of interest

Comparison:

 $\sigma(\bar{x}) = 0.113 \rightarrow \sigma(\bar{x}) = 0.024$

 $\bar{x}_{max} - \bar{x}_{min} = 0.753 \rightarrow \bar{x}_{max} - \bar{x}_{min} = 0.324$ $\sigma(\bar{y}) = 0.045 \rightarrow \sigma(\bar{y}) = 0.053$

 $\bar{y}_{max} - \bar{y}_{min} = 0.465 \rightarrow \bar{y}_{max} - \bar{y}_{min} = 0.52$

CORRECTING FOR *p*₃

CORRECTING FOR *p*₂

Rotated anti-correlation of interest

Comparison:

 $\sigma(\bar{x}) = 0.113 \rightarrow \sigma(\bar{x}) = 0.119$

 $\bar{x}_{max} - \bar{x}_{min} = 0.753 \rightarrow \bar{x}_{max} - \bar{x}_{min} = 0.776$ $\sigma(\bar{y}) = 0.045 \rightarrow \sigma(\bar{y}) = 0.038$

 $\bar{y}_{max} - \bar{y}_{min} = 0.465 \rightarrow \bar{y}_{max} - \bar{y}_{min} = 0.412$

WORKING TOWARDS REPLACING X_{first}

Distribution of X_0

Can the Gaisser-Hillas fit be done in such a way that not every second shower has $X_0 \approx 0$?

CONCLUSIONS

- Theoretical part: advanced, practical part: to be done
- $p_2 = E_0 \cdot f_{Ehad}^1(with LP) \cdot (f_{Ehad}^{HM})^{n_{(X_{max}-X_{first})}-1} \text{ and } p_3 = N_{had}^1 \text{ explain a}$ good part of the anti-correlation and the spread
- There are good chances to replace X_{first} by X_0

THANK YOU FOR YOUR ATTENTION!

BACKUP - DOING CORRECTIONS

