

Interferometic Measurements with hexagonal Antenna Arrays

Recap, Recent Work, and Plans

- For Auger: GAP 2020-54

- More general: This talk, SAL in prep

- My first HIRSAP talks
- POS(ICRC2019)294
- Still improving; SAL in

prep

Performance of the Auger Radio Detector

Last year:

- Refractive displacement of radio-emission footprint https://doi.org/10.1140/epjc/s10052-020-8216-z
- Emission depth on the radiation; Contribution of low energetic electrons to radio signal

Radio Interferometric Technique (In a nutshell)

Determine coherent signal B by interfering all measured signals S_i:

$$B_{j}(t) = \sum_{i}^{j} S_{i}(t - \Delta_{i,j})$$

arXiv:2006.10348v1

Illustrations from H. Schoorlemmer

Radio Interferometric Technique (In a nutshell)

Determine coherent signal B by interfering all measured signals S_i:

$$B_{j}(t) = \sum_{i}^{j} S_{i}(t - \Delta_{i,j})$$

Illustrations from H. Schoorlemmer

Radio Interferometric Technique

RIT for Auger

GAP 2020-053

Evaluated for Auger Radio Detectors

- In principle applicable: requires dense array & good time synchronization
- Impact of time jitter depends on detector layout / station multiplicity

RD: time synchronization to inaccurate

Now: Formulate some general rules for the application of RIT

- Station multiplicity vs. time jitter

Study dependency on station multiplicity

50 very dense 77.5° showers, random core around central station

250m spacing

1000m spacing

X_{max} Reconstruction

MC axis, no noise, no time jitter

- Use one calibration for all spacings
 - Minor bias
- Dense regular grid is better than star-shape pattern
- No significant correlation bt.
 N_{stat} and σ_{Xmax}

Resolution

MC axis!

Perfect time sync:

 No (significant) trend

Resolution

MC axis!

- Perfect time sync:
 - No (significant) trend
- With time jitter:
 - Significant trend

Axis Reconstruction

- Depends on arrival direction (φ = 0) is worse case scenario
 - Dependencies
 - spacing
 - time jitter
 - With selection
 - based on X_{max} gauss fit goodness
 - efficiency depends on spacing

Resolution

Reconstructed axis!

- Similar result as with MC axis
 - But smaller reconstruction efficiency

Summary

- Impact of time jitter scales with station multiplicity
 - Better time synchronization needed for higher frequencies
- For accurate axis reconstruction
 - Dense sampling improves reconstruction / makes it more reliable
 - Mild effect by time jitter
- For higher frequency bands:
 - Need better time synchronization
 - Need higher station density: rely on sufficiently sampled (sharper) Cherenkov Cone
- Atmosphere: Uncertainty in refractivity model has NO impact on rec. X_{max},
 - similar uncertainty from density profile as FD: 2 4 g/cm²

Outlook

Generalization to other zenith angle (toy model)?

Frequency bands

MC axis!

Frequency bands

- AERA: 30 80 MHz
- Grand: 50 200 MHz

For higher frequencies a better time synchronization is needed (expected!)

MC axis!

Frequency bands

MC axis!

Grand: 50 – 200 MHz

AERA: 30 – 80 MHz

- For higher frequencies a better time synchronization is needed (expected!)
- lceTop: 150 350 MHz
 - A few strong outliers

Footprint for IceTop

- For higher frequencies: You need to sample the Cherenkov ring
 - Need denser spacing

Atmosphere and Refractivity

 $N = (n - 1) \cdot 10^{6}$

Atmosphere and Refractivity

- Simulated with oct atmosphere reconstructed with feb/jun
- Reconstruct the same position of maximum
- X_{max} Reconstruction:
 Similar uncertainty
 due to density profile
 as FD

- 2-4 g/cm2

Radio Trigger: $A_{max} > 100 \mu V$

- N_{sig} / N_{all} ~ 1 / 3.5
- MC axis
- No noise
- Similar results:
 - Ons: no trend
 - 3ns: significant trend

Selection

Reconstruction with noise

Atmosphere and Refractivity

- Introduces bias in reconstruction
 - Due to density not refractivity profile
- $\Delta X_{max} \sim 30 \text{ g/cm}^2$
- Combined:
 σ = 14 g/cm²
- Zenith angle dependency?

26

Radio Interferometric Technique (In a nutshell)

Determine coherent signal *B* at position *j* by interfering all measured, time shifted signals S_i :

$$B_{j}(t) = \sum_{i}^{J} S_{i}(t - \Delta_{i,j})$$

300

400

500

600

Shower axis

1.0

0.9

0.8

0.7

0.6

Reconstruct shower axis

Reconstruct shower axis

Shower axis reconstruction

Search for maximum on rectangular grid

Shower axis reconstruction

Search for maximum on rectangular grid

Zoom in on maximum

Repeat several times

Atmosphere and Refractivity

The yearly fluctuations of the air refractivity at the site of the Pierre Auger Observatory are 7%, and are only 4% and 3% at the LOFAR and Tunka sites, respectively.

PhD Thesis Glaser

Where is the Radio Emission coming from?

Sliced Simulations

- Isolate radiation
 from all particles in a certain slide
- Proper handling of the coherence
- Charge-Excess in later than particles (and geomagnetic emission)

- Contradiction with lit.

Where is the Radio Emission coming from?

Inconsistent treatment of coherence!

Where is the Radio Emission coming from?

