Exploring the primordial Universe with QUBIC

the Q U Bolometric Interferometer for Cosmology

J.-Ch. Hamilton (APC - Paris, CNRS/IN2P3)

QU Bolometric Interferometer for Cosmology

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

J.-Ch. Hamilton

Outline

I.The CMB, its polarization and the early Universe

2. The challenging quest for the primordial B-modes

2

3.QUBIC overview, status and forecasts

QU Bolometric Interferometer for Cosmology

Part I: The CMB, its polarization and the primordial Universe

https://www.particlezoo.net/

QUBC

QU Bolometric Interferometer for Cosmology

3

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

J.-Ch. Hamilton 🥻

Matter-Radiation Decoupling

Why does the sun appear yellow and not X-ray ?

Answer:

- From the core to the photosphere, matter (Hydrogen) is ionized
 - Photons hardly propagate in a plasma
 - Energy is slowly transferred from the core to the photosphere (millions of years)

• At the Photosphere, matter becomes neutral

- → Photons propagate at the speed of light (8 minutes to the Earth)
- → We only see the photosphere: yellow color

2002/01/28 19:19

QU Bolometric Interferometer for Cosmology

Matter-Radiation Decoupling:

- \star z=1000: electrons captured by nuclei
- ★ Universe becomes transparent
- \star photons last scatter on electrons

QU Bolometric Interferometer for Cosmology

5

Matter-Radiation Decoupling:

- ★ z=1000: electrons captured by nuclei
- Universe becomes transparent
- \star photons last scatter on electrons

Uniform background of

photons

- Very uniform black-body (10⁻⁵ primordial perturbations)
- ★ 3000 K at z=1000
- ★ 3 K today
- \star From all directions in the sky

5

Matter-Radiation Decoupling:

- z=1000: electrons captured by nuclei
- Universe becomes transparent
- photons last scatter on electrons

Uniform background of

photons

- Very uniform black-body (10-5 primordial perturbations)
- 3000 K at z=1000 \mathbf{A}
- 3 K today
- From all directions in the sky

Picture of the Universe at z = 1000

- Temperature fluctuations ~ 10⁻⁵
 - denser = warmer
 - less dense = colder
- Partially polarized linearly (~10%)
 - Described with Stokes Parameters maps: I, Q and U

5

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

Planck Temperature Map

Matter-Radiation Decoupling:

- z=1000: electrons captured by nuclei
- Universe becomes transparent
- photons last scatter on electrons

Uniform background of

photons

- Very uniform black-body (10-5 primordial perturbations)
- 3000 K at z=1000
- 3 K today
- From all directions in the sky

Picture of the Universe at z = 1000

- Temperature fluctuations ~ 10⁻⁵
 - denser = warmer
 - less dense = colder
- Partially polarized linearly (~10%)
 - Described with Stokes Parameters maps: I, Q and U

5

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

Planck Temperature Map with polarization direction

QUBIC

QU Bolometric Interferometer for Cosmology

6

QU Bolometric Interferometer for Cosmology

6

QU Bolometric Interferometer for Cosmology

6

QUBC

QU Bolometric Interferometer for Cosmology

6

By the way... Where does all the structure come from ?

QU Bolometric Interferometer for Cosmology

7

Where does all the structure come from ?

- The Universe around us appears heavily structured (clusters, superclusters, filaments)
- The simple « Big-Bang » does not give any clue about the origin of this structure
- One has to assume that there were seeds of a given shape at early times

• Two possibilities :

 \star Ad-hoc initial conditions

★ A physical process that generates these conditions : Inflation

8

Galaxies in a declination slice in SDSS survey

Numerical Simulation (V. Springel - MPIA)

QUBC

QU Bolometric Interferometer for Cosmology

Where does all the structure come from ?

- The Universe around us appears heavily structured (clusters, superclusters, filaments)
- The simple « Big-Bang » does not give any clue about the origin of this structure
- One has to assume that there were seeds of a given shape at early times

• Two possibilities :

 \star Ad-hoc initial conditions

★ A physical process that generates these conditions : Inflation

8

Galaxies in a declination slice in SDSS survey

Numerical Simulation (V. Springel - MPIA)

QUBC

QU Bolometric Interferometer for Cosmology

INFLATION

QUANTUM SPACE-TIME FOAM7

THE ENTIRE OBSERVABLE UNIVERSEI

Quantum fluctuations of the « inflaton » are converted to microscopic during inflation and remain afterwards. They exactly have the required scale-invariant primordial power spectrum

QU Bolometric Interferometer for Cosmology

9

Early Universe Primordial Density Fluctuations

 $P(k) \propto k^{n_s - 1}$

P(k)

Fourier mode k

QU Bolometric Interferometer for Cosmology

10

Early Universe Primordial Density Fluctuations

Acoustic Oscillations

Fourier mode k

QUBIC

QU Bolometric Interferometer for Cosmology

10

QU Bolometric Interferometer for Cosmology Double Doctoral degree in DDAP

10

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

J.-Ch. Hamilton

QUBC

QU Bolometric Interferometer for Cosmology

10

QU Bolometric Interferometer for Cosmology Double Doctoral degree In DDAAp

10

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

J.-Ch. Hamilton

- Perturbations evolve from end of inflation to decoupling due to matter-radiation oscillations.
- The <u>transfert function</u> depends upon « simple physics » and cosmological parameters

10

• Allows to fit both cosmology and primordial spectra (including inflationary physics)

QU Bolometric Interferometer for Cosmology

CMB Map

QUBC QU

QU Bolometric Interferometer for Cosmology

CMB Map

QU Bolometric Interferometer for Cosmology Double Doctoral degree in DDAP

CMB Map

C_{ℓ} = Angular power spectrum

QU Bolometric Interferometer for Cosmology Double Doctoral degree In DDAP Astrophysics

The CMB is few % polarized

CMB Sky Color = Temperature - Vectors = Polarization

Observables

Stokes Parameters Tota Intensity Detector Y Detector X

Instrument

QU Bolometric Interferometer for Cosmology

12

The CMB is few % polarized

Scalar and tensor modes - E & B polarization

Scalar perturbations: $P_s(k) = A_s\left(\frac{k}{k_0}\right)$

- **Density fluctuations**
 - Temperature
 - **E** polarization
 - No B polarization

Tensor perturbations:

$$P_r(k) = A_t \left(\frac{k}{k_0}\right)^n$$

- Specific prediction from inflation
 - = Primordial gravitational waves
 - Temperature
 - **E** polarization
 - **B** Polarization

13

Scalar and tensor modes - E & B polarization

Scalar perturbations: $P_s(k) = A_s\left(\frac{k}{k_0}\right)$

- **Density fluctuations**
 - Temperature
 - **E** polarization
 - No B polarization

Tensor perturbations:

$$P_r(k) = A_t \left(\frac{k}{k_0}\right)^n$$

- Specific prediction from inflation
 - = Primordial gravitational waves
 - Temperature
 - **E** polarization
 - **B** Polarization

\Rightarrow detect B-modes is :

- Direct detection of tensor modes
- «smoking gun» for inflation
- Measurement of its energy scale $V^{1/4} = 1.06 \times 10^{16} \text{GeV} \left(\frac{r_{\text{CMB}}}{0.01} \right)$

13

Scalar and tensor modes - E & B polarization

Scalar perturbations: $P_s(k) = A_s\left(\frac{k}{k_0}\right)$ Density fluctuations

- **Density fluctuations**
 - Temperature
 - **E** polarization
 - No B polarization

• Tensor perturbations:

$$P_r(k) = A_t \left(\frac{1}{k} \right)$$

- Specific prediction from inflation!
 - = Primordial gravitational waves
 - Temperature
 - **E** polarization
 - **B** Polarization

\Rightarrow detect B-modes is :

- Direct detection of tensor modes
- «smoking gun» for inflation
- Measurement of its energy scale $V^{1/4} = 1.06 \times 10^{16} \text{GeV} \left(\frac{r_{\text{CMB}}}{0.01} \right)$

13

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

 $r = \frac{P_t(k_0)}{P_s(k_0)}$ ~ ratio between E and B modes

THE parameter we will talking about from now on !

E and B spectra

J.-Ch. Hamilton

Primordial Fluctuations Origin ? Inflation Predictions

QU Bolometric Interferometer for Cosmology

15

Primordial Fluctuations Origin ? Inflation Predictions

QU Bolometric Interferometer for Cosmology Double Doctoral degree In DDAAp

15

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

J.-Ch. Hamilton

Major message

B-modes

QUBIC

QU Bolometric Interferometer for Cosmology

16

Part 2: The difficult quest for primordial B-modes

[Monty Python - Holy Grail]

QUBC

QU Bolometric Interferometer for Cosmology

17

• Lensing signal (by LSS and v !)

QU Bolometric Interferometer for Cosmology

18

• Lensing signal (by LSS and v !)

QU Bolometric Interferometer for Cosmology

18

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

CMB Lensing by large scale structure

Deflection field:

Gradient of redshift-integral of LSS

- Lensing adds information
 - ★ lifts geometric CMB degeneracies
 - Curvature, sub-eV neutrino masses, Dark Energy...

• Effect on Stokes parameters $\tilde{T}(\vec{x}) = T(\vec{x} + \vec{\nabla}\phi)$ $(\tilde{Q} \pm i\tilde{U})(\vec{x}) = (\tilde{Q} \pm i\tilde{U})(\vec{x} + \vec{\nabla}\phi)$

- Smoothes the CMB spectra
- Adds power at arc minutes scales on TT, TE and EE

19

Generates « lensing B-modes » from E-modes...

QU Bolometric Interferometer for Cosmology

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

Lensing has peak efficiency at z~2

2.5 arcmin RMS deflections

CMB Lensing by large scale structure

Lensing has peak efficiency at z~2

2.5 arcmin RMS

deflections

Deflection field:

Gradient of redshift-integral of LSS

- Lensing adds information
 - ★ lifts geometric CMB degeneracies
 - Curvature, sub-eV neutrino masses, Dark Energy...

• Effect on Stokes parameters $\tilde{T}(\vec{x}) = T(\vec{x} + \vec{\nabla}\phi)$ $(\tilde{Q} \pm i\tilde{U})(\vec{x}) = (\tilde{Q} \pm i\tilde{U})(\vec{x} + \vec{\nabla}\phi)$

- Smoothes the CMB spectra
- Adds power at arc minutes scales on TT, TE and EE

19

Generates « lensing B-modes » from E-modes...

QU Bolometric Interferometer for Cosmology

Resulting Spectrum

Resulting Spectrum

Precious Cosmological Information in lensing ! (V masses, ...)

Lensing signal (by LSS and v !)
Weakness of Primordial B-modes

QU Bolometric Interferometer for Cosmology

21

Lensing signal (by LSS and v !)
Weakness of Primordial B-modes

QU Bolometric Interferometer for Cosmology

21

B-modes are very weak...

Lensing signal (by LSS and v !)
Weakness of Primordial B-modes
Instrumental Systematics

QU Bolometric Interferometer for Cosmology

23

Lensing signal (by LSS and v !)
Weakness of Primordial B-modes
Instrumental Systematics

QU Bolometric Interferometer for Cosmology

23

- Lensing signal (by LSS and v !)
 Weakness of Primordial B-modes
 Instrumental Systematics
- Foregrounds

QU Bolometric Interferometer for Cosmology

24

- Lensing signal (by LSS and v !)
 Weakness of Primordial B-modes
 Instrumental Systematics
- Foregrounds

QU Bolometric Interferometer for Cosmology

24

Temperature Maps from Planck at various frequencies

QU Bolometric Interferometer for Cosmology

Double Doctoral degree in

25

Temperature

[Planck]

QU Bolometric Interferometer for Cosmology

26

Temperature

Foreground Separation

Sky Model: $\vec{x}_{\nu} = \vec{x}_{CMB} + \vec{F}_{\nu} + \vec{n}_{\nu}$ With $\vec{F}_{\nu} = A_{\nu}\vec{F}$

Solution: $\hat{\vec{x}}_{CMB} = \sum w_{\nu} \vec{x}_{\nu}$

NB: this is simple I.L.C., there are more complex algorithms

Recent results

QU Bolometric Interferometer for Cosmology

28

Annual mee and HIF Nov. 20

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

Recent results

QU Bolometric Interferometer for Cosmology Double Doctoral degree In DDAAp

28

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

Recent results

QU Bolometric Interferometer for Cosmology Double Doctoral degree In DDAAp

28

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

Recent results

No primordial B-modes yet... Go back to work !

QUBIC

QU Bolometric Interferometer for Cosmology

28

One needs a dry and clean sky !

Argentina

Precipitable Water Vapor Map [0-30mm]

QUBC

QU Bolometric Interferometer for Cosmology

Greenland

29

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

bet

Many B-modes projects !

Many B-modes projects !

Part 3: QUBIC overview, status and forecasts

[https://www.qubicsalta.com.ar/]

QUBIC

QU Bolometric Interferometer for Cosmology

31

QUBIC Site: near San Antonio de los Cobres (Salta, Argentina)

- 5000m a.s.l. Clean and dry sky
- Next to LLAMA 12m radio antenna
- Access road built, works started on site

QUBC

QU Bolometric Interferometer for Cosmology

33

QUBIC Site: near San Antonio de los Cobres (Salta, Argentina)

- 5000m a.s.l. Clean and dry sky
- Next to LLAMA 12m radio antenna
- Access road built, works started on site

QUBC

QU Bolometric Interferometer for Cosmology

33

Primordial B-modes with QUBIC

Very weak signal

Focal Plane:

- 2048 TES with NEP ~ 4x10⁻¹⁷ W.Hz^{-1/2}
- 128:1 SQUIDs+ASIC Mux Readout
- End-To-End Sims. show σ(r)=0.01 with 2 years

Instrumental systematics

- <u>Cryogenic Optics after HWP and Polarizer + Full power</u> <u>detectors</u>
 - Instrumental X-Polarization has no effect

400 elements Interferometer

- Synthesized Imaging (well controlled beam) angular resolution 23.5 arcmin
- Self-Calibration using switches + active source

Polarized foregrounds

34

- Two wide bands: 150 and 220 GHz
 - 1 focal plane for each channel
- Spectro-Imaging allows to form up to 5 sub-bands for each
 - Increased Frequency Resolution
 - More Complex dust models can be constrained « locally »

QU Bolometric Interferometer for Cosmology

<u>QUBIC concept</u>: Quasi optical correlator

© M. Stolpovskiy

QUBC

QU Bolometric Interferometer for Cosmology

35

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

 $\binom{\mathsf{E}_{\mathsf{X}}}{\mathsf{E}_{\mathsf{X}}} \Rightarrow \binom{\mathsf{Q}}{\mathsf{U}} \times$

QUBIC concept: Quasi optical correlator

© M. Stolpovskiy

QU Bolometric Interferometer for Cosmology

35

<u>QUBIC concept</u>: Quasi optical correlator

 $\begin{pmatrix} \mathbf{E}_{\mathbf{X}} \\ \mathbf{E}_{\mathbf{Y}} \end{pmatrix} \Rightarrow \begin{pmatrix} \mathbf{Q} \\ \mathbf{U} \end{pmatrix} \times$ Half-W ZNe (Ex cos2φ(t) + Ey sin2φ(t)) (Ex cos2φ(t) - Ey sin2φ(t)) Plate Polarizing (Ex WS24(t) + Ey Str 24(t)) Grid $S = I + Q \cos 4\varphi(t) + U \sin 4\varphi(t)$

© M. Stolpovskiy

QUBC

QU Bolometric Interferometer for Cosmology

35

<u>QUBIC concept</u>: Quasi optical correlator

 $\begin{pmatrix} \mathbf{E}_{\mathbf{X}} \\ \mathbf{E}_{\mathbf{Y}} \end{pmatrix} \Rightarrow \begin{pmatrix} \mathbf{Q} \\ \mathbf{U} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \\ \mathbf{U} \end{pmatrix} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \\ \mathbf{U} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \\ \mathbf{U} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \end{pmatrix} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \end{pmatrix} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \times \begin{pmatrix} \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{Q} \end{pmatrix} \end{pmatrix}$ Half-W ZNe (Ex cos2φ(t) + Ey sin2φ(t)) (Ex cos2φ(t) - Ey sin2φ(t)) Plate Polarizing (Ex W524(t) + Ey Stn 24(t)) Grid HORNS -> $S = I + Q \cos 4\varphi(t) + U \sin 4\varphi(t)$ © M. Stolpovskiy

QUBIC

QU Bolometric Interferometer for Cosmology DDDAP Astrophysics

35

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

QU Bolometric Interferometer for Cosmology

rometer 35

QU Bolometric Interferometer for Cosmology

35 **DD**

l horn open

l baseline

l baseline

I baseline

total signal (all baselines)

QU Bolometric Interferometer for Cosmology

DDAp

35

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

J.-Ch. Hamilton

•

I horn open

l baseline

l baseline

I baseline

total signal (all baselines)

QU Bolometric Interferometer for Cosmology

Data !

Double Doctoral degree in DAAphysics

35

1.547m high 1.42m diameter About 800kg

- Outer cryostat: Roma
- IK Box / detectors: APC, CSNSM / IRAP
- Fridges: Manchester
- Optics: Roma / Milano / Maynooth / Cardiff
- Mount: La Plata
- Site: CNEA

Tests show expected behavior of the instrument !

Integrated over 2018 in Paris Calibration 2019-2020 <u>Ready to be Shipped !</u>

QUBC

QU Bolometric Interferometer for Cosmology

36

- Outer cryostat: Roma
- IK Box / detectors: APC, CSNSM / IRAP
- Fridges: Manchester
- Optics: Roma / Milano / Maynooth / Cardiff
- Mount: La Plata
- Site: CNEA

Tests show expected behavior of the instrument !

Integrated over 2018 in Paris Calibration 2019-2020 <u>Ready to be Shipped !</u>

QUBIC

QU Bolometric Interferometer for Cosmology

36

Delayed...

1.547m high 1.42m diameter About 800kg

- Outer cryostat: Roma
- IK Box / detectors: APC, CSNSM / IRAP
- Fridges: Manchester
- Optics: Roma / Milano / Maynooth / Cardiff
- Mount: La Plata
- Site: CNEA

Tests show expected behavior of the instrument !

Integrated over 2018 in Paris Calibration 2019-2020 <u>Ready to be Shipped !</u>

QUBIC

QU Bolometric Interferometer for Cosmology

36

QUBIC in Argentina

Integration Hall in Salta (CNEA Noroeste)

QUBIC in Argentina

Integration Hall in Salta (CNEA Noroeste)

Primary horns array

Synthesized beam (on the sky)

Synthesized beam used to scan the sky as with an imager

QU Bolometric Interferometer for Cosmology

38

Primary horns array

Synthesized beam (on the sky)

Synthesized beam used to scan the sky as with an imager

QU Bolometric Interferometer for Cosmology

38

Primary horns array

Resulting Beam on the sky Busilian up to #0

Synthesized beam used to scan the sky as with an imager

(3.0 90.00 Galatile

QU Bolometric Interferometer for Cosmology

38

Primary horns array

13 deg. FWHM, D=1.2 cm

38

Synthesized beam (on the sky)

Single detector beam - 400 horns 25% BW - 3 mm detectors

(including detector finite size and 30% BW)

Synthesized beam used to scan the sky as with an imager

QU Bolometric Interferometer for Cosmology

Systematics: Self-Calibration

• Unique possibility to handle systematic errors

- ★ Use horn array redundancy to calibrate systematics
 - In a perfect instrument redundant baselines should see the same signal
 - Differences due to systematics
 - Allow to fit systematics with an external source on the field

39

Unique specificity of Bolometric Interferometry !

[Bigot-Sazy et al., A&A 2012, arXiv:1209.4905]

QU Bolometric Interferometer for Cosmology

Rainbow ** Symphony

Donnacha Gayer (PhD @ Maynooth)

40

QU Bolometric Interferometer for Cosmology

Frequency Evolution

Frequency scaling is the basis of Spectro-Imaging A possibility unique to Bolometric Interferometry to constrain foregrounds

QU Bolometric Interferometer for Cosmology

41

Frequency Evolution

Frequency scaling is the basis of Spectro-Imaging A possibility unique to Bolometric Interferometry to constrain foregrounds

QU Bolometric Interferometer for Cosmology

41

Synthesized beam:

- Depends on horns configuration
 AND on frequency !
 - ex: a point source emitting at 140 and 160 GHz

QU Bolometric Interferometer for Cosmology

42

Synthesized beam:

Depends on horns configuration
 AND on frequency !

ex: a point source emitting at 140 and 160 GHz

QU Bolometric Interferometer for Cosmology

42

Synthesized beam:

Depends on horns configuration
 AND on frequency !

ex: a point source emitting at 140 and 160 GHz

QU Bolometric Interferometer for Cosmology

42

Synthesized beam:

Depends on horns configurationAND on frequency !

ex: a point source emitting at 140 and 160 GHz

There is spatial + frequency information !

QU Bolometric Interferometer for Cosmology

42

Synthesized beam:

Depends on horns configuration
 AND on frequency !

ex: a point source emitting at 140 and 160 GHz

There is spatial + frequency information !

Multi-frequency map-making with **a single wide-band TOD**

★ Spectral resolution ∆v/v~0.05
 ★ Shown to be quasi-optimal with simulations
 ★ article being finalized

42

Sky: Continuous frequency maps

Output: N broadband frequency maps

QU Bolometric Interferometer for Cosmology

Spectro-Imaging toy model

Sky signal is integrated over a single wide-band filter But we can reconstruct sub-band information !

Realistic Simulations (Dust)

[Mousset, Gamboa et al., https://arxiv.org/abs/2010.15119]

Total Intensity (Stokes I)

Wide-band filter at 220 GHz

Polarization (Stokes Q)

QU Bolometric Interferometer for Cosmology

45

Sky: « Infinite # bands »

QU Bolometric Interferometer for Cosmology

45

Sky: « Infinite # bands » Instrument: 2 wide bands

TOD(220 GHz)

TOD(150 GHz)

45

QUBIC

QU Bolometric Interferometer for Cosmology Double Doctoral degree in DDAAphysics

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

J.-Ch. Hamilton

Sky: « Infinite # bands »

Instrument: 2 wide bands Data Analysis: N narrow bands

QU Bolometric Interferometer for Cosmology

45

[Hamilton, Mousset et al., <u>https://arxiv.org/abs/2011.02213</u>]

Forecast for Inflation

[Hamilton, Mousset et al., https://arxiv.org/abs/2011.02213]

Error-bars on

Posterior likelihood on tensor-to-scalar ratio

$\sigma(r) = 0.015$ with 3 years of data Competitive with CMB Stage III

QU Bolometric Interferometer for Cosmology

47

Dust contamination mitigation

[Hamilton, Mousset et al., https://arxiv.org/abs/2011.02213]

Effective tensor-to-scalar ratio (can originate from CMB and from dust) measured in μ K²

Assumed to be from a map **after imperfect component separation**

⇒ Dust residuals remain

We can distinguish dust residuals down to 0.7% at the $\sim 3\sigma$ level (3 years of data)

QUBIC

QU Bolometric Interferometer for Cosmology

48

QUBIC Deployment Plan

2018-2020 : at APC

- Calibration successful !
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

QU Bolometric Interferometer for Cosmology

49

QUBIC Deployment Plan

2018-2020 : at APC

- Calibration successful !
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

49

QU Bolometric Interferometer for Cosmology

Some Lab Calibration results

[Torchinsky, Hamilton et al., https://arxiv.org/abs/2008.10056]

Synthesized beams

5 66++0

10000 TO 100000 TO 10000 TO 10

Frequency = 130 OHz - Theory

50

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

QU Bolometric Interferometer for Cosmology

Some Lab Calibration results

[Torchinsky, Hamilton et al., https://arxiv.org/abs/2008.10056]

Synthesized beams

5 66++0

10000 TO 100000 TO 10000 TO 10

Frequency = 130 OHz - Theory

50

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

QU Bolometric Interferometer for Cosmology
[Torchinsky, Hamilton et al., https://arxiv.org/abs/2008.10056]

Synthesized beams

Bandwidth measurement

500+0

50

Frequency = 130 OHz - Theory

QU Bolometric Interferometer for Cosmology

[Torchinsky, Hamilton et al., https://arxiv.org/abs/2008.10056]

Synthesized beams

Bandwidth measurement

Low Cross-Polarization

QU Bolometric Interferometer

for Cosmology

50

Double Doctoral degree in DDAP

Annual meeting of DDAp and HIRSAP 2020 Nov. 26th 2020

J.-Ch. Hamilton

[Torchinsky, Hamilton et al., https://arxiv.org/abs/2008.10056]

Synthesized beams

Bandwidth measurement

50

Low Cross-Polarization

QU Bolometric Interferometer

for Cosmology

Point-Source Reconstruction

Double Doctoral degree in

strophysics

[Torchinsky, Hamilton et al., https://arxiv.org/abs/2008.10056]

Synthesized beams

Bandwidth measurement

HIRSAP

Nov. 26th 2020

2018-2020 : at APC

- Calibration successful !
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

QU Bolometric Interferometer for Cosmology

51

2018-2020 : at APC

- Calibration successful !
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

<u> 2021-2022 : Argentina</u>

- 1st semester 2020: Installation on site
- First Light with ¼ focal plane

QU Bolometric Interferometer for Cosmology

51

2018-2020 : at APC

- Calibration successful !
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

<u> 2021-2022 : Argentina</u>

- 1st semester 2020: Installation on site
- First Light with ¼ focal plane

On-Sky demonstration of Bolometric Interferometry

QUBC

QU Bolometric Interferometer for Cosmology

51

2018-2020 : at APC

- Calibration successful !
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

<u> 2021-2022 : Argentina</u>

- 1st semester 2020: Installation on site
- First Light with ¼ focal plane

On-Sky demonstration of Bolometric Interferometry

QUBC

QU Bolometric Interferometer for Cosmology

51

2018-2020 : at APC

- Calibration successful !
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

<u> 2021-2022 : Argentina</u>

- 1st semester 2020: Installation on site
- First Light with ¼ focal plane

On-Sky demonstration of Bolometric Interferometry

2023-2026 : Argentina

- Upgrade to QUBIC 1st module (2 focal planes 150 and 220 GHz)
- Data taking: 2-3 years $\sigma(r)=0.01$

QU Bolometric Interferometer for Cosmology

51

2018-2020 : at APC

- Calibration successful !
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

<u> 2021-2022 : Argentina</u>

- 1st semester 2020: Installation on site
- First Light with ¼ focal plane

On-Sky demonstration of Bolometric Interferometry

2023-2026 : Argentina

- Upgrade to QUBIC 1st module (2 focal planes 150 and 220 GHz)
- Data taking: 2-3 years $\sigma(r)=0.01$

Stage III $\sigma(r) = 0.01$

QU Bolometric Interferometer for Cosmology

51

2018-2020 : at APC

- Calibration successful !
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

<u> 2021-2022 : Argentina</u>

- 1st semester 2020: Installation on site
- First Light with ¼ focal plane

2023-2026 : Argentina

- Upgrade to QUBIC 1st module (2 focal planes 150 and 220 GHz)
- Data taking: 2-3 years $\sigma(r)=0.01$

2027-... : Argentina - QUBIC evolves towards Stage-IV

- Improved designs being investigated
 - Multimodes, Lower T detectors, Hex. Horn-array, ...
 - B.I. at the focus of LLAMA 12m antenna (high-ell B-modes)

51

- Excellent quality site open to development
- Join CMB-S4 worldwide effort ?

QU Bolometric Interferometer for Cosmology

Annual meeting of DDAp

and HIRSAP 2020

Nov. 26th 2020

HIRSAP

On-Sky demonstration of Bolometric Interferometry

Stage III $\sigma(r) = 0.01$

J.-Ch. Hamilton

2018-2020 : at APC

- Calibration successful !
- Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors

In-Lab demonstration of Bolometric Interferometry

<u> 2021-2022 : Argentina</u>

- 1st semester 2020: Installation on site
- First Light with ¼ focal plane

On-Sky demonstration of Bolometric Interferometry

2023-2026 : Argentina

- Upgrade to QUBIC 1st module (2 focal planes 150 and 220 GHz)
- Data taking: 2-3 years $\sigma(r)=0.01$

Stage III $\sigma(r) = 0.01$

2027-... : Argentina - QUBIC evolves towards Stage-IV

- Improved designs being investigated
 - Multimodes, Lower T detectors, Hex. Horn-array, ...
 - B.I. at the focus of LLAMA 12m antenna (high-ell B-modes)

51

- Excellent quality site open to development
- Join CMB-S4 worldwide effort ?

Stage IV $\sigma(r) = 0.001$

QU Bolometric Interferometer for Cosmology

Summary

QUBIC is a novel instrumental concept

- ★ First Bolometric Interferometer
- \star Dedicated to CMB polarimetry and inflationary physics
- ★ High sensitivity with ~2000 TES bolometers
- ★ Different and likely smaller instrumental systematics:
 - Self Calibration allowed by observing individual fringe patterns (Unique to QUBIC)
- ★ Spectro-Imaging with two physical bands (150 / 220 GHz) and 5-10 sub-bands:
 - Foregrounds contamination control and removal with up to 10 bands (unique to QUBIC)
- ★ <u>Target :</u>
 - First module (150-220 GHz): $\sigma(r)=0.015$ (incl. dust)
 - Stage IV evolution of QUBIC $\sigma(r)=0.001$ (inc. multimodes optics, 12m LLAMA for LAT, ...)

QUBIC deployment is on the way:

- \star TD calibration at APC completed: Instrument compliant with expectations !
- \star Instrument ready to be shipped !
- ★ First light in Argentina in 2021
- Upgrade to Nominal Instrument late 2023

52

Summary

QUBIC is a novel instrumental concept

- ★ First Bolometric Interferometer
- \star Dedicated to CMB polarimetry and inflationary physics
- ★ High sensitivity with ~2000 TES bolometers
- ★ Different and likely smaller instrumental systematics:
 - Self Calibration allowed by observing individual fringe patterns (Unique to QUBIC)
- ★ Spectro-Imaging with two physical bands (150 / 220 GHz) and 5-10 sub-bands:
 - Foregrounds contamination control and removal with up to 10 bands (unique to QUBIC)
- ★ <u>Target :</u>
 - First module (150-220 GHz): σ(r)=0.015 (incl. dust)
 - Stage IV evolution of QUBIC $\sigma(r)=0.001$ (inc. multimodes optics, 12m LLAMA for LAT, ...)

QUBIC deployment is on the way:

- \star TD calibration at APC completed: Instrument compliant with expectations !
- \star Instrument ready to be shipped !
- ★ First light in Argentina in 2021
- Upgrade to Nominal Instrument late 2023

Tired of UHECRs ? Welcome to jump-in anytime !!

52

QU Bolometric Interferometer for Cosmology

Thank you

View from the site

Integration timelapse (2018)

Exciting times ahead !!!

Check out these 8 Articles released in 2020:

53

- QUBIC I: Overview and Science Program (arXiv:2011.02213 [astro-ph.IM])
- QUBIC II: Spectro-Polarimetry with Bolometric Interferometry (arXiv:2010.15119 [astro-ph.IM])
- QUBIC III: Laboratory Characterization (arXiv:2008.10056 [astro-ph.IM])
- QUBIC IV: Performance of TES Bolometers and Readout Electronics (to be released soon !)
- QUBIC V: Cryogenic system design and performance (arXiv:2008.10659 [astro-ph.IM])
- QUBIC VI: cryogenic half wave plate rotator, design and performances (arXiv:2008.10667 [astro-ph.IM])
- QUBIC VII: The feedhorn-switch system of the technological demonstrator (arXiv:2008.12721 [astro-ph.IM])
- QUBIC VIII: Optical design and performance (arXiv:2008.10119 [astro-ph.IM])

QU Bolometric Interferometer for Cosmology

Thank you

View from the site

Integration timelapse (2018)

Exciting times ahead !!!

Check out these 8 Articles released in 2020:

53

- QUBIC I: Overview and Science Program (arXiv:2011.02213 [astro-ph.IM])
- QUBIC II: Spectro-Polarimetry with Bolometric Interferometry (arXiv:2010.15119 [astro-ph.IM])
- QUBIC III: Laboratory Characterization (arXiv:2008.10056 [astro-ph.IM])
- QUBIC IV: Performance of TES Bolometers and Readout Electronics (to be released soon !)
- QUBIC V: Cryogenic system design and performance (arXiv:2008.10659 [astro-ph.IM])
- QUBIC VI: cryogenic half wave plate rotator, design and performances (arXiv:2008.10667 [astro-ph.IM])
- QUBIC VII: The feedhorn-switch system of the technological demonstrator (arXiv:2008.12721 [astro-ph.IM])
- QUBIC VIII: Optical design and performance (arXiv:2008.10119 [astro-ph.IM])

QU Bolometric Interferometer for Cosmology

